Department of Biochemistry

B.Sc Biochemistry Programme Outcome

Sr.No.	Subject	Course objective	Learning outcome	Programme
	Code/			Implemaented
	Class			From
1	BC-101 F.Y.B.Sc	To acquaint students with basic concepts of biomolecule chemistry	 Students will be able to: Learn the elements present in biomolecules Differentiate between monomers and polymers. Explain the role of water in synthesis and breakdown of polymers. Compare and contrast the structure and function of the oligo and polysaccharides. Summarize the functions of proteins and able to recognize the importance of the three dimensional shape of a protein on its function and the role of non-covalent bonds in maintaining the shape of a protein. 	June 2018 CBCS pattern
2	BC-102 F.Y.B.Sc	To complement the students with the basic understanding on the general aspects of animals and plants cell biology	 Students will be able to: Differentiate prokaryotic from eukaryotic cells and plant cells from animal cells Discern structure and functions of cell organelles Understand mitosis and meiosis processes. 	June 2018 CBCS pattern
3	BC-103 F.Y.B.Sc	To acquaint with various techniques used in biochemistry	 Students will be able to: Understand hazards and safety measure in laboratory. Do normality, molarity, and percent solution based calculations. Perform qualitative tests for carbohydrates, lipids and 	June 2018 CBCS pattern

4	BC-201 F.Y.B.Sc	To complement the students with the fundamental concepts of biochemistry	 amino acids Use, handling and care of compound microscope Identify various phases of mitosis Students will be able to: Recall DNA structure and functions Discuss types and functions of RNA Describe classification and properties of enzymes Understand industrial applications of enzymes 	June 2018 CBCS pattern
5	BC-201 F.Y.B.Sc	To complement the students with the various concepts about microorganisms	 Students will be able to: Explain types, characteristics and significance of microorganisms Describe the structure and functions of major components of microbial cells Understand microbial growth, its measurement and bacterial growth curves Classify microorganisms based on nutrition Apply isolation techniques to screen bacteria on solid media 	June 2018 CBCS pattern
6	BC-203 F.Y.B.Sc	To impart practical knowledge on basic techniques adopted in Biochemistry	 Students will be able to understand: Working principle of spectrophotometer and able to handle spectrophotometer Various staining techniques and Isolate bacteria by streak plate method Familiarize with viable count of the micro- organisms. 	June 2018 CBCS pattern
7	BC-301	To accustom students with basic concepts of Food	Student will be able to-	June 2018-19

	S.Y.B.Sc	Biochemistry	 functions Calculate energy value of food and its measurement Explain food adulteration and its types Discuss food spoilage and various factors determining food spoilage Discuss various methods of food preservation Understand the concept of food additives 	CBCS pattern
8	BC-302 S.Y.B.Sc	To accustom students with basic concepts of Human Physiology	 Student will be able to- Understand histology and anatomy of various organs of digestive system Explain structure and functions of various parts of respiratory system Understand mechanism of respiratory process Learn various types of hematopoiesis Understand mechanism of blood coagulation Explain structure and functions of nephron. 	June 2018-19 CBCS pattern
9	BC-303 S.Y.B.Sc	To acquaint students with various techniques used in biochemistry	 Students will be able to: Enumerate RBCs and WBCs and determine the health status Determine blood groups, ESR and understand its clinical significance 	June 2018-19 CBCS pattern

			 Determine energy value of food stuff using bomb calorimeter Determine rancidity in edible oil and its applications Determine moisture content in food sample Examine food for microorganisms 	
10	BC-401 S.Y.B.Sc	To accustom students with basic concepts of Environmental Biochemistry	 Students will be able to: Understand the concept of pollution and pollutants Learn about greenhouse effect and global warming and measures to control greenhouse effect Understand the concept of bioenergy Explain biodegradation and bioremediation Discuss concept and types of toxins 	June 2018-19 CBCS pattern
11	BC-402 S.Y.B.Sc	To accustom students with basic concepts of Human Physiology	 Explain structure, functions and types of neurons Discuss mechanism of synaptic transmission Understand anatomy, istology and functions of male and female reproductive system Learn molecular events during fertilization Learn mechanism of hormone action Explain various hormones secreted by endocrine glands and their functions 	June 2018-19 CBCS pattern

12	BC-403 S.Y.B.Sc	To acquaint students with various techniques used in biochemistry	 Students will be able to: Record blood pressure by sphygmomanometer and explain its significance Determine bleeding time and clotting time and explain its significance Determine sodium and potassium content in blood serum samples by flame photometer Analyze wastewater for BOD/COD Analyze soil and water for various parameters 	June 2018-19 CBCS pattern
13	BC-501 T.Y.B.Sc	• To accustom students with basic concepts of Genetics.	 After successful completion of this course, students are expected to: Understand the importance of Mendel's work. Understand structure of chromosome and DNA organization. Understand replication, transcription, translation processes. 	June 2020-21 CBCS pattern
14	BC-502 T.Y.B.Sc	 To accustom students with basics of Plant Biochemistry. To study the life processes of plants 	 Learn life processes like photosynthesis, photorespiration and energy generation. Study various phytohormones, secondary metabolites and their mechanism. 	June 2020-21 CBCS pattern
15	BC-503 T.Y.B.Sc	• To accustom students with Biochemistry of various diseases	 Learn various disorders related to carbohydrate metabolism. Study different 	June 2020-21 CBCS pattern

		To understand inborn errors of metabolism	 hemoglobinopathies. Understand clinical importance of various enzymes and isoenzymes. 	
16	BC-504 T.Y.B.Sc	To accustom students with basics of metabolism To comprehend catabolism and anabolism of various metabolites	 Learn various catabolic and anabolic reactions related to carbohydrate and amino acids. Study lipid and nucleotide metabolic reactions. 	June 2020-21 CBCS pattern
17	BC-505 T.Y.B.Sc	• To study various biophysical processes. To study laws of thermodynamics and bioenergetics.	 Understand the concept of acid-base and buffers. Study various biophysical processes like diffusion, osmosis, viscosity, etc. 	June 2020-21 CBCS pattern
18	BC-506 T.Y.B.Sc	 To accustom students with basics of Fermentation Technology. 	 Learn screening of microbes, their preservation and inoculum development. Understand instrumentation, types and working of bioreactors. 	June 2020-21 CBCS pattern
19	BC-507 T.Y.B.Sc	 To accustom with Techniques in Molecular Biology. To study techniques in Plant Biotechnology. 	 Isolate DNA and estimate DNA, RNA, secondary metabolite and chlorophyll pigments. Produce alcohol, citric acid, amylase and vermicompost. 	June 2020-21 CBCS pattern
20	BC-508	• To accustom with	Estimate various	June 2020-21

	T.Y.B.Sc	various pathological tests. To generate awareness about clinical significance of the tests.	 clinically important components with their clinical significance. Estimate various clinically important enzymes and their clinical significance. 	CBCS pattern
21	BC-509 T.Y.B.Sc	 To accustom students with practical applications of biophysical chemistry. To give practical experience of biophysical processes. 	 Prepare buffers of desirable pH and molarity. Determine viscosity and surface tension of the sample. 	June 2020-21 CBCS pattern
22	BC-601 T.Y.B.Sc	 To introduce students to the genetic engineering field. To make students aware about various genetic engineering techniques. 	 Learn role of enzymes and vectors involved in gene transfer. Study various gene transfer methods. Study gene library preparation. 	June 2020-21 CBCS pattern
23	BC-602 T.Y.B.Sc	 To accustom students with plant tissue culture techniques. To study the role of membranes in biological systems 	 Learn various plant tissue culture techniques. Understand Agrobacterium mediated gene transfer. 	June 2020-21 CBCS pattern
24	BC-603 T.Y.B.Sc	To accustom students with basics of immunology To comprehend various immunochemical tests	 Explore cells and organs of immune system. Learn immunity and immune response. Study concept of antigen and antibody. 	June 2020-21 CBCS pattern
25	BC-604	• To accustom	• Understand	June 2020-21

	T.Y.B.Sc	students with basics of enzymology. To understand applications enzyme in various fields.	 classification and specificity of enzymes. Learn mechanism of enzyme action and enzyme kinetics. Study activation and deactivation of regulatory enzymes. 	CBCS pattern
26	BC-605 T.Y.B.Sc	 To accustom students with basics of various analytical techniques. To explore applications of analytical techniques. 	 Study concept, principle, and applications of various spectrophotometries. Learn principles and applications of various chromatography Understand concept of 	June 2020-21 CBCS pattern
27	BC-606 T.Y.B.Sc	 To accustom students with basic concepts of toxicology. To study biotransformation of toxicants. 	 Learn basic concepts of toxicants, toxicity and dose-response relationship. Study metabolism and mode of action of toxicants. 	June 2020-21 CBCS pattern
28	BC-607 T.Y.B.Sc	 To accustom students with Techniques in Molecular Biology. To study Techniques in Plant Biotechnology. 	 Prepare MS media and will have knowledge about macro and micro elements. Perform various plant tissue culture techniques. Separate DNA fragments by agarose gel electrophoresis. 	June 2020-21 CBCS pattern
29	BC-608 T.Y.B.Sc	• To accustom students with immunological methods To make students aware	 Differentially count WBCs. Know the importance of cross matching of donor's and recipient's blood. 	June 2020-21 CBCS pattern

		about toxicological methods.	Perform various immunological Ag-Ab tests.
30	BC-609 T.Y.B.Sc	 To accustom students with various analytical techniques. To study enzyme kinetics practically. 	 Perform enzymology related practical. Perform separation of mixture using chromatography and electrophoresis. June 2020-21 CBCS pattern
31			

BIOTECHNOLOGY

UNDER GRADUATE (UG)

After	After successful completion of three year degree program in B.Sc. Biotechnology a student				
shoul	should be able to				
Sr.	Program outcomes (POs)	Program specific outcomes(PSOs)			
no.					
1	Provide students an excellent academic experience and equip them with ability to solve a broad range of problems in our rapidly-changing technological environment.	Understand Fundamentals of Biological sciences.			
2	Strong foundation and knowledge in scientific fundamentals with a capacity to know how, when and where to use the knowledge in specific ways.	Build a strong knowledge of Basics of cell , molecular biology, genetics, biochemistry, microbiology			
3	Gain comprehensive understanding of the principles and practices of biotechnology and broad-based concepts in an interdisciplinary structure	Comprehend Importance of Industrial and medical application of Biotechnology in day to day life			
4	Design, perform experiments, analyze and interpret data for investigating basic problems in biotechnology and related fields.	Learn and master techniques required to handle and work in a biotechnology Laboratory			
5	Apply appropriate tools and techniques in biotechnological manipulation and ability to combine experimental and computational approaches to address biotechnological research	Develop a Well-rounded and confident personality with ability for smooth transition to industrial or research sector			

Course Outcomes

Semester-I (FY B.Sc. Biotechnology)

After completion of these courses students should able to				
Course	Outcomes			
BT101: Cell Biology (Theory)	 To introduce students to the basic concepts in organization, structure and function of prokaryotes and eukaryotes To introduce students to the importance and applications of basic microscopy as well as staining 			

	techniques in the study of
	microorganisms
BT102: Biochemical Tools (Theory)	1) Structure and function of biomolecules
	2) Working of biological buffers
	3) Basics of thermodynamics and
	electrochemistry
BT103: Practical Paper I (Practical)	1) Safety rules when in the Microbiology
	Laboratory and become proficient in
	Aseptic techniques
	2) To gain proficiency in the use of
	Micropipettes and glass pipettes
	3) To learn principles of Microscopy, to
	gain proficiency in the use and care of
	the Compound Microscope and to
	successfully focus and observe stained
	bacteria

Semester-II (FY B.Sc. Biotechnology)

After completion of these courses students should able to	
Course	Outcomes
BT 201: Biomolecules (Theory)	1) Understand the structure, properties
	and functions of important
	biomolecules from carbohydrates,
	lipids, and nucleic acids
	2) Correlate the properties and apply the
	same during for other courses such as
	molecular biology and cell biology.
BT 202: Basic Microbiology B (Theory)	1) Landmarks in Microbiology.
	Fundamental aspects of Prokaryotic
	and Eukaryotic Cell structure and
	function, and the differences between
	these cells
	2) Principles of working of the light
	microscope and to be able to apply this
	knowledge in the laboratory.
	3) Develop analytical skills, critical & creative thinking
BT 203: Practical Paper II (Practical)	1) To introduce students to the basic
	concepts in microbial nutrition and
	microbial growth
	2) To provide students with the
	knowledge of different methods for
	the isolation, storage and culture of
	microorganisms

After completion of these courses students should able to	
Course	Outcomes
BT: 301 Basic Genetics (Theory)	1) Understand the organization of genome in prokaryotes, eukaryotes
	and viruses
	2) Know about organization of DNA in
	the chromosomes, coding and non- coding portions of the DNA
	3) Know about chromosome structure,
	banding and karyotypes and
	chromosomal disorders
	4) Understand the basics of inheritance of traits, gene interactions and expression
BT 302: Bioprocess Technology (Theory)	1) Basic bioreactor design and types of
	reactors.
	2) Screening and Strain improvement
	techniques.
	3) Media components used in
	fermentation industry, optimization techniques.
	4) Techniques for Air and Media
	sterilization
BT 303: Practical Paper III (Practical)	1) Understand Pedigree chart analysis
	2) Understand Mendelian inheritance
	3) Understand MIC, microbe screening
	4) Understand mushroom cultivation
SEC I: Algae and Mushroom Cultivation	1) Understand commercial development
	of algal culture
	2) Get aware about commercial
	utilization of algae
	3) Understand diversity of morphological and biochemical
	4) Know role of algae in industries
	T INIOW TOIL OF algae III IIIuusules

Semester-III (SY B.Sc. Biotechnology)

Semester-IV (SY B.Sc. Biotechnology)

After completion of these courses students should able to	
Course	Outcomes
BT 401: Molecular Biology (Theory)	 Discuss the mechanisms associated with gene expression at the level of transcription and translation. Understand how genetic information is stored in DNA and RNA, how that information is decoded by the cell

	3) Discuss the mechanisms associated
	with regulation of gene expression in
	prokaryotes and understand how the
	flow of information is controlled in
	response to the changes in
	environment by the operon models
BT 402: Immune Response (Theory)	1) Understand cellular and molecular
	basis of immune responsiveness.
	2) Understand antigen antibody reaction
	3) Understand the importance of
	vaccines.
BT 403: Practical Paper IV (Practical)	1) Understand basics in serological
	practicals and its handling.
	2) Aware of molecular biology
	techniques about isolation of genetic material.
	3) Aware and train spectrophotometric estimations of metabolites
	4) Know about the basic concept in
	immunology
SEC II: Bioanalytical Instrumentation	1) Student should be able to understand
	basic concepts of biophysics
	2) Should be able to relate it to day today
	life.

|--|

After completion of these courses students should able to	
Course	Outcomes
BT-501: Genetics and Molecular Biology	 Get the knowledge of mobile genetic elements in prokaryotes and eukaryotes
	 Learn the principles of recombinant DNA technology and its applications for understanding and application in future research.
	 3) Learn the applications of molecular biology and recombinant DNA technology in various fields so that the students should be able to take up careers in the field of Biotechnology
BT-502: Agriculture Biotechnology	 Understand applications of biotechnology in agriculture, plant disease control and floriculture.

	2) Understand Nitrogen fixation and
	Biofertilizer, Rhizosphere microflora
	and its role in the rhizosphere.
	3) Understand the basics of Plant
	pathology and disease control,
	horticulture and floriculture
BT-503: Animal Tissue Culture	1) Basic concepts in animal tissue culture
	with understanding of different
	physicochemical requirements,
	variations in techniques and
	applications of animal tissue culture
	2) Gain an understanding of cell culture
	techniques and their applications
BT-504: Bioengineering	1) Gain an in-depth understanding of the
-	manufacturing principles and practices
	associated with dairy food products
	2) Possess a comprehensive knowledge
	of the science and technology involved
	in various fermentation processes
	3) Develop an understanding of the
	process control, upstream and
	downstream processing stages in an
	industry
BT-505: Food Biotechnology	1) Understand fundamental principles
	food and milk microbiology
	2) Understood fermented products, and
	pasteurization of milk
	3) Understood the basics of food
	spoilage, food preservation, and
	fermented food.
BT-506A: Environmental Biotechnology-I	1) Have a perspective on global
	environmental problems and
	environmental toxicants.
	2) Know about the role of environmental
	biotechnology in management of
	environmental problems.
	3) Have a concept of Biodegradation,
	Bioremediation, Phytoremediation
BT 507 Practical Course: Industrial	1) Learn principles underlying
Biotechnology	fermentation processes.
	2) Know various stages in bioprocess that
	involve upstream and downstream
	process.
	3) Understand actual fermentation
	process of some metabolites

BT-508: Practical Course: Animal	1) achieve skill in animal cell culture
Biotechnology and Immunology	techniques
	2) Learn principles underlying
	immunological techniques
	3) Know various immunological
	techniques and blood group detection
BT-509: Practical Course: Applied and	1) Isolation and characterization of food
Environmental Biotechnology	fermenting organism,
	2) Understand various aspects of
	environmental biotechnology like
	BOD, COD
	3) Understand the soil contents.

After completion of these courses students should able to	
Course	Outcomes
BT-601: Recombinant DNA Technology	1) Get the knowledge of mobile genetic
	elements in prokaryotes and
	eukaryotes
	2) Learn the principles of recombinant
	DNA technology and its applications
	for understanding and application in
	future research.
	3) Learn the applications of molecular
	biology and recombinant DNA
	technology in various fields so that the
	students should be able to take up
	careers in the field of Biotechnology
BT-602: Plant Biotechnology	1) Understand the relevance of plant
	tissue culture techniques in large scale
	cultivation of plants and production of
	secondary metabolites
	2) Know the methods of development of
	transgenic plants and their
	applications, understanding and
	application in future research
BT-603: Immunology	1) The concepts of the components and
	mechanisms of immune responses and
	its role.
	2) The basic principles of immunological
	methods and understand their
	application in different fields
BT-604: Bioprocess Technology	1) Basic principles of upstream and
	downstream process of different

Semester-VI (TY B.Sc. Biotechnology)

r	
	commercially important products:
	enzymes, antibiotics, organic acids
	2) Understand Quality and economic
	aspects ion fermentation
	3) Understand the principles and role of
	biotechnologist in QC, QA, IPR and
	patenting
BT-605: Pharmaceutical Biotechnology	1) Gain basic knowledge applications of
	biotechnology in the field of
	pharmaceuticals.
	2) Will understand the concept of drug
	discovery, drug designing.
BT-606A: Environmental Biotechnology-II	1) The principles of microbial ecology,
DI-000A. Environmental Dioteennology-n	the importance of microbial diversity
	in environmental systems, interaction
	of microbial population with the
	environment, microbial life in extreme
	environment, incrobial file in extreme environments and the method used to
	study the microbial ecology for
	practical applications in environmental
	biotechnology
	2) Few examples of integrated
	applications of biotechnology for
	sustainable development as
	ecofriendly alternatives.
BT-607: Practical Course: Plant	1) Isolate and characterization of:
Biotechnology	Xanthomonas citri, Rhizobium sp,
	preparation and efficiency testing of
	biofertilizer.
	2) Preparation of stock solutions, explant
	sterilization, media preparation and
	sterilization, callus culture, shoot tip
	culture.
BT-608: Practical Course: Genetics and	1) Understand and verification of
Bioinformatics	Mendel's laws using color beads
	2) Shall able to perform DNA isolation,
	perform transformation and
	conjugation in bacteria.
BT-609: Practical Course: Pharmaceutical	1) Understand and perform sterility
Biotechnology	testing of pharmaceutical products,
<i>o</i> v	chemical and biological, MIC
	2) Understand and perform MLT,
	validation of LAF, membrane
	filtration and sterility testing.
<u> </u>	intration and stormty testing.

BIOTECHNOLOGY

POST GRADUATE (PG)

	After successful completion of three year degree program in M.Sc. Biotechnology a student should be able to	
Sr.	Program outcomes (POs)	Program specific outcomes (PSOs)
no.		
1	To help the students to build interdisciplinary approach	Analyze and interpret scientific data to solve technical, conceptual and abstract scientific problems including prediction and modeling to complex molecular and biotechnological activities.
2	To empower students to excel in various research fields of Life Sciences	Apply knowledge to develop critical thought and practical understanding in the field of biotechnology to find solutions for human benefits in health care, agriculture, environment and related fields
3	To inculcate sense of scientific responsibilities and social and environment awareness	Can become entrepreneurs in various demanding sector of biotechnology such as diagnostics, drug designing, stem cell biology, immunology, environmental biotechnology etc
4	To help students build-up a progressive and successful career	The student will develop sensitivity to environmental issues and concerns and shall understand principles of ethics within the framework and apply these principles for environmentally and culturally sensitive issues.
5	Understand the importance of quality control, bioethics, intellectual property and know the process to file patents in for inventions in the fields of sciences	Identify and analyze a molecular or biochemical problem and formulate, research literature, review existing knowledge to reach substantiated conclusions using principles of Biotechnology independently or in a team

Course Outcomes

Semester-I (M.Sc.Jr. Biotechnology)

After completion of these courses students should able to	
Course	Outcomes
BT-101 : Microbial diversity and physiology	1) The expanse of microbial diversity
	2) Estimates of total number of species

	3) Species Divergence and the measurement of microbial diversity.4) Measures and indices of diversity.
BT-102: Biomolecules and molecular enzymology	1) Fundamentals of structure and function of biomolecules with special emphasis on proteins
	2) Techniques to study protein structure and interactions
	3) Enzyme kinetics and the complexity of metabolic reactions
BT–103: Immunology	1) Concept of "Resistance" against diseases in our body. Antigen antibody reactions.
	2) An Understanding of clinical transplantation.
	 Autoimmunity and strategies for treating autoimmune diseases.
	4) Properties of viruses and their replication cycle.
	5) Mode of action of antiviral drugs and viral vaccines.
BT-104 Laboratory course – i	1) Acquire expertise in basic biochemical techniques.
	2) Get knowledge in the analysis and estimation of biomolecules
	 Develop expertise in basic analytical techniques of microbiology.
BT-105 Laboratory course - ii	1) Undertake enzyme kinetics in industrial application
	2) Apply molecular diagnostic and immunodiagnostic techniques.

Semester-II (M.Sc.Jr. Biotechnology)

After completion of these courses students should able to	
Course	Outcomes
BT-201: Molecular biology	 Understand how different genomes are packaged and organized Understand various transposable DNA elements and their mechanism of transposition
	 3) Understand various Molecular Biology processes like replication, transcription, translation
	 Understand control and regulation of various processes

BT-202: Bioinstrumentation and biostatistics	1) Acquire knowledge on basic
	biophysical and biochemical aspects
	and Biostatistics
	2) learn purification of molecules,
	analytical tools, electrophoretic
	separation
	3) learn how to interpret protein mobility
	on PAGE under native and SDS
BT-203 Bioprocess engineering and	1) Design of Fermenter/ bioreactors
technology	2) Liquid-Solid, Liquid-liquid and Gas-
	liquid mass transfer equations and
	significance in bioprocess.
	3) Fermentation Media, Media
	Sterilization and monitoring of process
	variables
BT-204 Laboratory course - iii	1) Isolation of genomic DNA from
	bacteria, animal and plant cells.
	2) Marks Restriction Digestion/Size
	fractionation of restricted DNA
	fragments by Agarose Gel
BT-205 Laboratory course - iv	1) Understanding growth kinetics
-	2) Understanding practical aspect of
	TDT, TDP

Semester-III (M.Sc.Sr. Biotechnology)

After completion of these courses students should able to		
Course	Outcomes	
BT-301 - Recombinant DNA Technology	 Various natural and laboratory based modifications of DNA 	
	2) How damage is repaired	
	3) Tools creating DNA constructs	
	4) Various protein expression strategies	
BT-302 – Plant Biotechnology	 Transgenic methods to improve algal, fungal and plant productivity 	
	 Importance of secondary metabolites and production in plants 	
	 Molecular approaches used for plant breeding and trait selection 	
BT-303: Advanced Environmental Biotechnology	 Global and regional threats to the environment; Air, water and soil pollution. 	
	 Role of Biotechnology in effluent treatment, biodegradation, bioremediation, bioaugmentation with examples 	
	 Concept of EIA and environmental laws. 	

BT-304: Methods in Plant Biotechnology	1) Understanding PTC basics
	2) Understanding embryogenesis
	3) Understanding DNA analysis methods
BT-305: Methods in Environmental	1) Understanding COD determination
Biotechnology	2) Understanding MIC and application

After completion of these courses students should able to		
Course	Outcomes	
BT- 401 Food and Pharmaceutical	1) To impart the knowledge of use of	
Biotechnology	microorganisms in food preparation,	
	preservation and spoilage.	
	2) To impart the knowledge of genetic	
	engineering and pharmaceutical	
	biotechnology	
BT - 402: Bioinformatics	1) Various bioinformatics tools and	
	techniques and how to use that for the	
	analysis of the biological experimental	
	data.	
	2) Concepts of various databases and	
	various methods for the data retrieval,	
	data storage, and data mining and use	
	that data for the further analysis.	
	3) In- Silico approach for the protein	
	modeling and drug discovery process.	
BT-403: Industrial and Business	1) Get the knowledge of quality	
Biotechnology	assurance and quality control in the	
	field of biotechnology	
	2) Get an idea of biosafety guidelines,	
	regulatory laws for transgenic	
	organisms	
	3) Aware of effects of release of GMOs,	
	environmental impact assessment	
BT- 404: Methods in Biotechnology	1) Understanding Aflatoxin testing	
	2) Understanding estimation of alkaline	
	protease	
	3) Understanding Multiple sequence	
BT 405: Biotechnology Practical (Project	alignment of DNA It is expected that the students will design	
BT-405: Biotechnology Practical (Project Dissertation Work)	experiments and collect experimental data to	
	deduce conclusions. At the end, they will	
	submit a detailed thesis for evaluation. The	
	students should be introduced to research	
	methodology in the beginning through few	
	lectures.	

Semester-IV (M.Sc.Sr. Biotechnology)

DEPARTMENT OF CHEMISTRY

B. SC. IN CHEMISTRY

AIMS AND OBJECTIVES OF COURSE STRUCTURE OF B.SC. CHEMISTRY

- * To promote understanding of basic facts and concepts in Chemistry while retaining the excitement of Chemistry.
- ✤ To make students capable of studying Chemistry in academic and Industrial courses.
- To expose the students to various emerging new areas of Chemistry and apprise them with their prevalent in their future studies and their applications in various spheres of chemical sciences.
- ✤ To develop problem solving skills in students.
- ✤ To expose the students to different processes used in Industries and their applications.
- * To develop ability and to acquire the knowledge of terms, facts, concepts, processes, techniques and principles of subjects,
- ✤ To develop ability to apply the knowledge of contents of principles of chemistry.
- ✤ To inquire of new knowledge of chemistry and developments therein.
- ✤ To expose and to develop interest in the fields of chemistry
- ✤ To develop proper aptitude towards the subjects.
- ◆ To develop the power of appreciations, the achievements in Chemistry and role in nature and society.
- ◆ To develop skills required in chemistry such as the proper handling of apparatus and chemicals.

After suc	After successful completion of Under Graduate Degree Program in Chemistry student should be able to understand		
Sr. No.	Program outcomes (POs)	Program specific outcomes (PSOs)	
1	Provide students an excellent academic experience and equip them with ability to solve a broad range of problems in our rapidly- changing technological environment.	Understand Basic Fundamentals of Chemical Sciences.	
2	Strong foundation and knowledge in scientific fundamentals with a capacity to know how, when and where to use the knowledge in specific ways.	Build a strong knowledge of Basics concepts of Chemistry in particular Physical, Inorganic, Organic and Analytical Chemistry	
3	Gain comprehensive understanding of the principles and practices of Chemical Sciences and broad-based concepts in an interdisciplinary structure	Comprehend Importance of Industrial and medical application of Chemistry and some applied aspects of Chemistry in Industries.	
4	To gain the experimental skills, should Perform Experiments, Analyze and interpret data for investigating basic problems in Chemical Sciences and related fields.	Learn principal techniques of chemical analysis required to work in a Chemistry Laboratory and Industry.	

Semester-I and II F. Y. B. Sc. [Chemistry]

After successful completion of the course students should able to			
Course Outcomes			
CH-101Physical and Inorganic Chemistry	• Students should be able to define and explain the equivalent conductance		
	• Students should able to differentiate, integrates the given functions.		
	• Students can compare the elements on the basis of periodic properties.		
	• Students are able to correlate the theoretical concepts of chemistry with practical approach.		
CH-102 Organic and Inorganic Chemistry	y • Students should able to define alkanes, alkenes and alkynes, and their reactions.		
	• Students should able to write nomenclature common and IUPAC.		
	• Students should able to explain geometry of molecules using VSEPR theory.		
CH-103 Practical Chemistry	Students should calibrate volumetric apparatus.		
	• Students should able to prepare the solutions of different concentrations.		
	• They can analyze the inorganic compounds		
CH-201 Physical and Inorganic Chemistry			
	• Students can explain surface tension and its applications.		

	 Students should able to explain different steps in metallurgical process. Students are able writ electron configuration of P-block elements and understand bonding and shapes of different molecules. 	
CH-202 Organic and Inorganic Chemistry	 Students should able to write common and IUPAC names of aldehyde and ketones, and can prepare using different reactions. should able to write nomenclature common and IUPAC system, of carboxylic acid and their derivatives. Preparation using different methods. Students should able to explain ionic, covalent, coordinate bonds, metallic bond. 	
CH-203 Practical Chemistry	• Students should able to determine heat of solution, viscosity of different solution.	
	• They can determine normality and strength of given acids.	
	 Able to determine percentage composition of organic solutions. 	

After completion of this course Course Objectives	
 Course Objectives CH-501: Principals of Physical Chemistry To orient and acquaint the students towards the basic concepts Quantum Chemistry To acquire knowledge about rates of chemical reactions and distinguishing the reaction of different order and their characteristics. To understand the basic principles of phase rules and phase diagrams. To learn the underlying principles of electrode reactions, electrochemical cells and applications of EMF. CH-502: Inorganic Chemistry To describe the VSEPR theory to predict shape of molecules from electron pairs. To describe the bonding in simple compounds using VBT. To describe the principles of VBT to predict hybridization of orbitals. To understand how CFT explains electronic structure, colour and 	 Course Outcomes Students are expected to: Understand the significance of wave function and postulates of quantum mechanics. Deduce rate equations and half-life equations for first and second order reactions Draw and explain the one and two component system phase diagrams. Explain the principles of electrode processes and apply them during Practicals. Learn about the VSEPR theory and how it can be used to explain molecular shapes. Learn about the VBT to describe the formation of covalen bonds in terms of atomic orbital overlap. Learn about stability of complexes using CFSE. Learn about MOT to draw energy diagrams and to predict
 magnetic properties of co-ordination compounds. To introduce the basic principles of MOT and electronic geometry of molecules. CH-503: Organic Reaction Mechanism To study different types of organic reactions. To understand the mechanisms of different types of reactions. To distinguish between types of substrates and types of reagents. To understand ways of attack of reagent, breaking and formation of bonds in different reaction mechanisms. To study kinetics, evidences and factors affecting different types of reactions. To study stereochemistry of different reactions. 	 bond order. Students will learn organic reactions like nucleophilic substitution, electrophilic substitution, nucleophilic addition, electrophilic addition and elimination. Students will be able to write/ explain mechanisms of those types of reactions. Students will understand how a reaction takes place in one or more steps. Students will understand the types of intermediates formed in different reactions.

Semester-V (TY B.Sc. Chemistry)

• To understand role of different reagents in different reactions.	• Students will learn how reagent attacks the substrate molecule and accordingly how bonds break and formed.
	• Students will learn how change in structure of substrate, reagent and solvent changes the product formed and its stereochemistry.
	• Students will be able to predict the products and to suggest the mechanisms.
CH-504: Industrial Chemistry	• Basic requirements of Chemical Industry, different terms,
• To produce graduates with enhanced skills, applied knowledge, aptitude to	operations and processes involved in chemical Industry.
carry out higher studies or research and development in the various industrial areas.	• Describe Copy Right Act, Patent Act and Trade Marks, Bureau of Indian Standards (BIS) and International Organization for
• To make the student cognizant about important aspects of Chemical	Standardization (ISO).
Industries, Industrial work culture and environment.	• Basic requirements, raw materials, different processes and
• To prepare the students for immediate entry to the workplace with sound	operations involved in Sugar Industry and also different grades of
theoretical knowledge and some basic experimental concepts in the area of	sugar and uses of by-products of sugar industry.
various industries viz. Sugar Industry, Fermentation Industry, Petroleum and	• Importance of fermented products, basic requirements, theory
Petrochemicals.	and process of alcohol making, fractional distillation and various
• To offers the synergism between basic concepts of Chemistry with	terms involved in Fermentation Industry.
Industrial applications.	• Understand Occurrence of Petroleum, theories of formation of
• To equip the students with knowledge of some industrial organic synthesis as requirement of diverse chemical industries.	Petroleum and different terms Viz. Knocking, Anti-Knock Compounds, Octane number, Cetane number, Gasohol and Power
• Empower the students to understand the concepts in chemical processing,	alcohol etc.
engineering and industrial development.	Manufacturing processes involved in Industrial Organic
	Synthesis such as Methanol, Isopropanol, Glycerol, Acetylene and
	Aromatic hydrocarbon i.e. Toluene from petroleum with their
	uses.
CH-505: Analytical Chemistry	• Explain the fundamentals of analytical methods and instruments
• To develop an understanding of the range and uses of analytical methods in	for qualitative and quantitative Analysis.
chemistry.	• Express the role of analytical chemistry in science.
• To understand and establish the role of chemistry in quantitative analysis.	• Students will be able to function as a member of an
• To enhance the Analytical instrumental skill of the students.	interdisciplinary problem solving team.

CH-506(B): Green Chemistry	• With this course, the graduate students will be able to understand
• There is rising concern since 1970 about environmental pollution, depleting resources, climate change, ozone depletion, legislation which is getting stringent with strict environmental laws, rising cost of waste deposits,	the twelve principles of green chemistry that will help to build the basic understanding of toxicity, hazards and risk of chemical substances.
 getting stringent with strict environmental raws, fishig cost of waste deposits, health concern and so on. We are facing the challenge to work towards sustainable development. Since 1990, today's society is moving towards becoming more and more environmentally conscious. Green chemistry has been introduced in1990 for overall sustainable development against the environmental concerns. Green chemistry is not a new branch of chemistry, but it is a new way chemistry, which should be practiced regularly. Innovations and applications of green chemistry in education has helped companies not only to gain environmental benefits but at the same time to achieve economic and societal goals also. This is possible because these undergraduate students are ultimate scientific community of tomorrow. 	 The course will help to understand stoichiometric calculations and relate them to green chemistry metrics. The students will learn about atom economy and understand its importance over percentage yield. The students will learn to design safer chemicals, products and processes that are less toxic than the conventional chemistry, understand significance of catalysis, use of renewable feed stock, renewable energy sources, importance of green solvents, etc. The course will train the students to appreciate green chemistry and boost the students to think and develop the skills to innovate and search for the solutions to environmental problems. Green chemistry is only way of future chemistry to ensure sustainability with absolute zero waste. The success stories and real-world cases will motivate the young generation to practice green chemistry.
CH-507 and 607 Practical Course: Physical Chemistry	Students will get basic analytical and technical skills to work
• To develop skills required in chemistry such as the appropriate handling of	effectively in the various fields of chemistry.
apparatus, instruments and chemicals.The student will learn the laboratory skills needed to design, safely conduct	• Students will able to calibrate and handle instruments like conductometer, potentiometer, pH meter, colorimeter,
and interpret chemical research.	spectrophotometer, polarimeter.
• To expose the students to an extent of experimental techniques using modern instrumentation.	• They have ability to perform accurate quantitative measurements with an understanding of the theory and use of contemporary
• The student will develop the ability to effectively communicate scientific information and research results in written and oral formats.	chemical instrumentation, interpret experimental results, perform calculations on these results and draw reasonable, accurate conclusions.
	• They get skills required in chemistry such as the proper handling of apparatus and chemicals.

	• They will have ability to present scientific and technical information resulting from laboratory experimentation in both written and oral formats
 CH-508: Practical Course: Inorganic Chemistry To analyze the inorganic mixtures. To determine metal from ore and alloy analysis. Using colorimetric analysis to determine amount of metal. 	 Student will able to determine cation & anion from inorganic mixtures by using qualitative analysis. Student will able to determine metal from ore & alloys. Students will be able to design & carry out scientific experiments as well as accurately record & analyze the results of experiments. Students will be able to handle colorimeter for estimation of
 CH-509 and 609 Practical Course: Organic Chemistry To develop skills required in chemistry such as the appropriate handling of apparatus and chemicals. The student will learn the laboratory skills needed to design, safely conduct and interpret chemical research. To expose the students to an extent of experimental techniques using modern instrumentation. The student will develop the ability to effectively communicate scientific information and research results in written and oral formats. 	 metal ions. Separate and analyze binary water insoluble mixture. Separate and analyze binary water soluble mixture. Estimate - Acetamide, Glucose and Glycine by volumetric method, Estimate basicity of various acids. Synthesis of various organic compounds through greener alternatives. Understand Thin Layer Chromatographic techniques and physical constant. Understand the purification technique use in organic chemistry.

Semester-VI (TY B.Sc. Chemistry)

After completion of these courses students should able to
Course

Outcomes

 CH-601: Principals Physical Chemistry To learn the basics of molecular spectroscopy and rotational spectra. To understand the basic principles and applications of nuclear chemistry. To learn the consequences of light absorption by atoms and molecules and photochemical reactions. To learn the laws of crystallography and basics of crystal structure. 	 Analyze the rotational spectra of diatomic molecules and determine the bond length. Explain and apply the radioactivity principles for various chemical and biological investigations. Describe the mechanism of fluorescence, phosphorescence and photochemical reactions. Analyze the given crystal structure and determine the indices of planes, interplaner distances and type of crystal structure.
 CH-602: Inorganic Chemistry To describe basic principles of nanomaterials. To describe basic synthesis of nanoparticles. To describe composition and technological importance of inorganic solids. To describe composition of cement, lime and alloys. To describe manufacture of fertilizers. 	 Learn about basic principles and synthesis of nanomaterials. Learn about classification, composition and processing of cement. Learn about classification and composition of alloys. Learn about types manufacture and applications of fertilizers.
 CH-603: Spectroscopic Methods of Structure Determination To study principle of spectroscopy and to understand wave parameters and terms involved in spectroscopy. To study different types of spectroscopy. To understand principle, concept and the terms used in each type of spectroscopy. Interpretation of UV, IR, NMR spectra. Use of spectral data for determination of structure of unknown organic compounds. To study different applications of each type of spectroscopy. 	 Students will learn interaction of radiations with matter and different regions of electromagnetic radiations. They will know different wave parameters. Will learn principle of mass spectroscopy, its instrumentation and nature of mass spectrum. Students will understand principle of UV spectroscopy and nature of UV spectrum and will be able to calculate maximum wavelength for any conjugated system. Students will understand principle of IR spectroscopy, types of vibrations and the nature of IR spectrum. will be able to find out IR frequencies of different functional groups. Students will understand principle of NMR spectroscopy and terms used in NMR spectroscopy. They will learn measurement of chemical shift and coupling constants.

 CH-604: Chemistry of Industrially Products To make student perceptive about various commodity industries viz. Cosmetics and Perfumes, Dyes and Pharmaceuticals, Pesticides Soaps and Detergents, related diversified and multidisciplinary fields of chemical industry. To produce graduates with enhanced skills, knowledge and research aptitude to carry out higher studies or research and development in the various industrial areas. To equip students with advance knowledge about various industrially important products. To makes students ready for immediate entry to the workplace with sound theoretical and basic experimental knowledge in the areas of various industries. To engender the substantial interest in the students to understand the concepts in chemical processing, engineering and industrial development of present era viz. Cosmetics and Perfumes Industry, Dyes and Pharmaceuticals, Pesticides, Soaps and Detergents, related multidisciplinary and diversified fields of chemical industry. To describe the industrial production of a number of important organic and inorganic compounds / chemicals and products of end use. To gain comprehensive knowledge of cutting-edge developments in a field of different chemical industries by discussions and exchange of experiences and knowledge. 	 Students will be able to interpret the NMR data and they will be able to use it for determination of structure of organic compound. • Students will be able to determine structure of simple organic compounds on the basis of spectral data such as λ max values, IR frequencies, chemical shift (δ values Describe the industrial production of a number of important organic and inorganic compounds / chemicals and products of end use. Gain comprehensive knowledge of cutting-edge developments in a field of different chemical industries. Importance of Cosmetics Industry and a general study including preparation and uses of the Hair dye, hair spray, shampoo, suntan lotions, lipsticks, talcum powder, nail enamel, creams (cold, and shaving creams). Perfumes and identify the distinguishing features of its components and also an essential oils and their importance in cosmetic industries with reference to Eugenol, Geraniol, sandalwood oil, eucalyptus, rose oil, 2-phenyl ethyl alcohol, Jasmone, Civetone, Muscone etc. Know about pesticides both natural and synthetic, benefits and adverse effects of it, also synthesis, manufacture and uses of pesticides viz. Organochlorines (DDT, Gammexene,); Organophosphates (Malathion, Parathion); Anilides (Alachlor and Butachlor). Definition, classification, raw material used in soaps and detergents, reaction involved in it, Manufacture of Soaps and cleansing action of soaps and chemical constitution. Importance's, definition and meaning of the different terms involved in Drugs and Pharmaceuticals Industry and also synthesis, uses, properties and industrial manufacture of Paracetamol, Aspirin, and Chloramphenicol
---	---

CH-605: Analytical Chemistry	• Compare the Instrumental methods and non instrumental methods and
• To provide knowledge of instruments which are used in Chemical,	there advantages.
Pharma, Petroleum, and insecticide and pesticide industry	• Solve the problem of detection and separation using analytical
• To increase student technical skill as per industry need.	instruments.
• To develop an understanding of the range and uses of analytical	• Students will be able to explore new areas of research in bothchemistry
methods in chemistry.	and allied fields of science and technology.
	• Students will be able to explain why chemistry is an integral activity for
	addressing social, economic, and environmental problems.
CH-606(A): Polymer Chemistry	• Define terms like monomer, polymer, polymerization, polydispersity
• The course offers the basic concepts of polymer, polymerization,	index, etc., classify polymers based on their origin, native backbone chain,
classes of polymers, important properties, and poly(lactic acid) as a	and thermal response.
biodegradable polymer.	• Know glass transition temperature and its determination, various ways to
• The course also offers to study preparation, properties, and	express molecular weights of polymers and polydispersity index.
applications of industrially important selected polymers.	• Identify different mechanisms of polymerizations viz. free radical, ionic,
• The course will give chance to study various mechanisms of	and condensation polymerizations.
polymerization and learn different techniques of polymerization.	• Distinguish techniques of polymerization based on physical conditions
• The student will be able to understand glass transition temperature	required for the preparation of polymers in laboratory or industry.
and factors affecting on it and various ways to express molecular	• Familiar with preparation, properties, and applications of industrially
weight of polymers.	important selected polymers
CH-608: Practical Course: Inorganic Chemistry	• Students will be able to prepare co-ordination compounds.
• To determine metal from gravimetric estimations.	• Students will be able to determine amount of metal by using quantitative
• To determine amount of metal by volumetric analysis.	analysis.
• To determine preparation /synthesis of co-ordination compound.	• Students will be able to calculate Rf value of metal.
• To study separation techniques of metals.	• Students will be able to design & carry out scientific experiments as well
• To use colorimetric analysis of metal.	as accurately record & analyze the results of experiments.
	• Students will be able to explain why chemistry is an integral activity for
	addressing social, economic & environmental problems.

POST GRADUATE (PG) Department of Chemistry Course Outcomes (M.Sc. in Organic Chemistry)

After completion of these Courses students should able to	
Course	Outcomes
CH-110: Physical Chemistry –I	• Apply the quantum mechanical principles to simple systems of
	chemical interest.
	• Differentiate between the nature of chemical bond concept
	from MOT and VBT.
	• To identify and write the different types of equilibriums in a
	given nuclear decay process.
	•To be able to calculate the ionic strength and activity
	coefficient by using the basic concepts underlying.
CH-130: Inorganic Chemistry –I	• Students will understand the Molecular term symbols.
	• Students will understand the different diatomic and triatomic molecule
	• Students will apply the fundamental concepts of molecular
	Symmetry and operation
	• Students will understand the importance and types of organic
	reactions and their applications
	• Students will understand the importance and types of
	organometallic compounds of transition metals.
	• Students will acquire knowledge of transition metal
	carbonyls and related compounds.
CH-150: Organic Chemistry –I	• Students will understand the reaction intermediates.
	• Students will understand the different classes, mechanism &
	stereochemistry of reactions.
	• Students will apply the fundamental concepts of organic
	reaction mechanism.
	• Students will understand the importance and types of organic
	reactions and their applications
	• Students will understand the importance and types of organic reactions and their applications
	• Students will acquire knowledge of important characteristics
	of organic compounds.
CH-190: Industrial Safety and Good	• Understand the importance of laboratory safety.
Laboratory Practices	• Aware and follow healthy laboratory practices.
	• Acquire the knowledge about personal protective equipment.
AC-101: Practicing Cleanliness	• Identify need of cleanliness at home/ office and other public places.

• Plan and observe cleanliness programs at home and other
places.
• Practice cleanliness practices in day to day life.

After completion of these Courses students should able to	
Course	Outcomes
CH-210: Physical Chemistry –II	 Students will gain an understanding of joule- Thomson effect, third law of thermodynamics, absolute entropy, standard entropy and residual entropy and partial molar quantity and it's significance. Students should understand the importance of statistical thermodynamics and concept of partition functions. Students should able to understand study of chemical kinetics and spectroscopy.
CH-230: In-organic Chemistry –II	 Students will understand the reaction mechanism in transition metal complexes. Students will understand the different structures of ionic solids like AX type (ZnS, NaCI, CsCI), AX2 and Layer structures. Students will understand energy levels in an atom, coupling of orbital angular momenta, coupling of spin angular momenta and spin orbit coupling. Students will understand the Laporte orbital selection rule and spin selection rule. Students will understand the application of complexes in analytical, in metallurgy, in industry.
CH-250: Organic Chemistry –II	 Students will learn the basic name reactions and rearrangement reactions. Students will understand the applications of reagents in organic synthesis. Students will apply the basic knowledge about core study of spectroscopy and stereochemistry
CH-290: Instrumentation and Analysis	 Explain various theoretical concepts of analytical chemistry. Build up ability to solve the numerical problems. Apply theoretical principles, working of various classical and modern instrumentation techniques.
AC-201: Audit Course Soft Skills	Grasp soft skills and communication skills.Apply life skills to manage the situation.
CH-P-1 : Physical Chemistry Practical	• Students will understand the preparation for each experiment.

CH-I-1 : Inorganic Chemistry Practical	 Setup and standardize the potentiometer, PH meter and conductometer. Identify thermodynamics and kinetics of simple systems. To know safety requirements and lab skills to perform physico-chemical experiments. To Apply the principles and techniques to different systems. Students will understand the process of ore analysis. Students are able to apply their knowledge for binary mixture separation of inorganic compounds using quantitative analysis. Students can analyze content s present in drug. Students are able to synthesize and evaluate the complex and
	 also able to determination of complex purity. Students are able to evaluate lattice energy of binary salt. Students understand the the techniques of chromatography and its application in analysis. Students are able to handle and perform the instrumental analysis techniques.
CH-O-1 : Organic Chemistry Practical.	 Students understand the importance of safety techniques and handling of chemicals. Students are made aware of carrying out different types of reactions and their workup methods. Students are able to perform purification techniques in organic chemistry like recrystallization, distillation and extraction. This practical course is designed to make students aware of green chemistry and role of green chemistry in pollution reduction.
	 Students are able to aplly their knowledge for development of experiment involve green chemistry.

S.S.V.P.Sanstha's L. K. Dr. P. R. Ghogrey Science College, Dhule Department: Computer Science Name of Course: F.Y.B.Sc. Course Code: CS-101 Pattern: 60-40

Name of the Subject Teacher: Prof.Amit.D.Umbre

Sr. No.	Objective / Outcomes
1	To aware of Computer.
2	Students know Operating System, viruses and Networking.
3	Give Students in-depth understanding of why computers are essential components in business
4	Introduce Fundamental of Computing DevicesAnd computer vocabulary.
5	Provide foundational or "computer literacy".

S.S.V.P.Sanstha's L. K. Dr. P. R. Ghogrey Science College, Dhule

Department: Computer Science

Name of Course: F.Y.B.Sc.

CourseCode: CS-102

Pattern: 60-40

Name of the Subject Teacher: Ms. Sayali S.Nandan

Sr. No.	Objective / Outcomes
1	Students can develop small project by using C Programming Language.
2	Understand how to write and use functions, how the stack is used to implement function calls, and parameter passing options.
3	Use an integrated development environment.
4	The course is designed to provide complete knowledge of C language. Students will be able to develop logics which will help them to create programs, applications.
5	By learning the basic programming constructs they can easily switch over to any other language in future.

S.S.V.P.Sanstha's L. K. Dr. P. R. Ghogrey Science College, Dhule Department: Computer Science Name of Course: F.Y.B.Sc. CourseCode: CS-201 Pattern: 60-40

Name of the Subject Teacher: Prof.Amit D.Umbre

Sr. No.	Objective / Outcomes
1	Students are able to develop own web page.
2	Applying foundational knowledge, graduates analyze and solve problems of both practical and theoretic nature.
3	To get familiar with basics of the Internet Programming.
4	Implement interactive web page(s) using HTML, CSS and JavaScript.
5	To acquire knowledge and skills for creation of web site considering both client and server side.
Department: Computer Science

Name of Course: F.Y.B.Sc.

CourseCode: CS-202

Pattern: 60-40

Name of the Subject Teacher: Ms. SayaliNandan

Sr. No.	Objective / Outcomes
1	Students can develop software by using C Programming Language with advanced features.
2	Students will be able to develop logics which will help them to create programs, applications in C .
3	By learning the basic programming constructs they can easily switch over to any other language in future.
4	This course involves a lab component which is designed to give the student hands-on experience with the concepts.
5	Identify situations where computational methods and computers would be useful.

S.S.V.P.Sanstha's L. K. Dr. P. R. Ghogrey Science College, Dhule Department: Computer Science Name of Course: S.Y.B.Sc. CourseCode: CS-211 Pattern: 60-40

Name of the Subject Teacher: Dr.S.P.Patil

Sr. No.	Objective / Outcomes
1	Students can Develop Knowledge of Application.
2	Also improve to ability to implement algorithm.
3	To Compute Complexity of various Algorithm
4	Develop Application using data structure Algorithm
5	Implement Appropriate sorting /searching technique

Department: Computer Science

Name of Course: S.Y.B.Sc.

CourseCode: CS-212

Pattern: 60-40

Name of the Subject Teacher: Mr.Ashok .A.Pawar

Sr. No.	Objective / Outcomes
1	Students can develop greater understanding of issue involve in programming language
2	Students can develop small Projects.
3	Students implement projects requiring the implementation of the above data structures
4	The prime purpose of C++ programming was to add object orientation to the C programming language, which is in itself one of the most powerful programming language.
5	C++ programming developes the skill of students application skills.

S.S.V.P.Sanstha's L. K. Dr. P. R. Ghogrey Science College, Dhule Department: Computer Science Name of Course: S.Y.B.Sc. CourseCode: CS- SEC-I(Skill Enhancement Course-I) Pattern: 60-40

Name of the Subject Teacher: Mr.Rahul.D.Chaaudhari

Sr. No.	Objective / Outcomes
1	To Develop Software/Hardware Installations Skills.
2	It is helpful for students for practical knowledge.
3	Effective knowledge get from various softwares.
4	It also developes students skill power.
5	Effective skill enhancement becomes more capable and confident in their performance.

S.S.V.P.Sanstha's L. K. Dr. P. R. Ghogrey Science College, Dhule Department: Computer Science Name of Course: S.Y.B.Sc. CourseCode: CS-221 Pattern: 60-40

Name of the Subject Teacher: Dr.S.P.Patil

Sr. No.	Objective / Outcomes
1	To Understand and Remember Algorithm and Analysis Procedure.
2	Student can use that for research.
3	Students develop knowledge of basic data structures for storage and retrieval of ordered or unordered data.
4	Students develop knowledge of applications of data structures including the ability to implement algorithms for the creation, insertion, deletion, searching, and sorting of each data structure.
5	Students implement projects requiring the implementation of the data structures.

S.S.V.P.Sanstha's L. K. Dr. P. R. Ghogrey Science College, Dhule Department: Computer Science Name of Course: S.Y.B.Sc. CourseCode: CS-222 Pattern: 60-40

Name of the Subject Teacher: Mr.Ashok .A.Pawar

Sr. No.	Objective / Outcomes
1	To understand the advanced features of programming language c++.
2	Tounderstand the graphics and file system.
3	Students implement projects requiring the implementation of the above data structures.
4	Students can develop small Projects.
5	To learn the syntax and semantics of the C++ programming language.

S.S.V.P.Sanstha's L. K. Dr. P. R. Ghogrey Science College, Dhule Department: Computer Science Name of Course: S.Y.B.Sc. CourseCode: CS- SEC-II(Skill Enhancement Course-II) Pattern: 60-40

Name of the Subject Teacher: Mr.Rahul.D.Chaaudhari

Sr. No.	Objective / Outcomes
1	To understand the Network Security Precautions.
2	Explain the concepts of confidentiality, availability, and integrity (CIA) in context of Information .
3	Explain key networking protocols, and their hierarchical relationship in the context of a conceptual model, such as the OSI and TCP/IP framework.
4	Build multiple host and network architectures, given business requirements and constraints; student will configure operating systems.
5	Developes basic understanding of cyptography technique.

S.S.V.P.Sanstha's L. K. Dr. P. R. Ghogrey Science College, Dhule Department: Computer Science Name of Course: T.Y.B.Sc. CourseCode: CS- 311 Pattern: 60-40

Name of the Subject Teacher: Dr.Rupali.P.Patil

Sr. No.	Objective
1	To understand use and development of software tools.
2	To understand the design structure of Assembler and macro preprocessor
3	To understand the design structure of compiler.
4	To understand the functions of linkers and loaders
	Outcomes
1	Understand details about system software
2	To do basic system program like development of editors lexical analyzers etc
3	Students are familiar with language processing activities- functions of translators, loader and linkers

Department: Computer Science

Name of Course: T.Y.B.Sc.

CourseCode: CS- 312

Pattern: 60-40

Name of the Subject Teacher: Miss. Sayali.S. Nandan

Sr. No.	Objective
1	To understand the fundamental concepts of database.
2	To understand user requirements and frame it in data model
3	To understand creations, manipulation and querying of data in databases.
	Outcomes
1	On completion of the course, student will be able to- Solve real world problems using appropriate set, function, and relational models
2	Design E-R Model for given requirements and convert the same into database tables.
3	Use SQL.

Department: Computer Science

Name of Course: T.Y.B.Sc.

CourseCode: CS- 313

Pattern: 60-40

Name of the Subject Teacher: Dr.S.N.Kotkar.

Sr. No.	Objective
1	This paper helps to understand What is software and the process in development of software.
2	It gives detailed knowledge about various models and requirements needed in developing software. It also elaborates the concepts of designing
3	It also elaborates the concepts of designing
	Outcomes
1	After completion of the course: Students are able to perform the E-R Diagram, DFD, Data dictionary, Decision tree about software.
2	They can also design the software in learned language using the course content
3	Get the knowledge of types of testing & how testing is performed in industry.

Department: Computer Science

Name of Course: T.Y.B.Sc.

CourseCode: CS- 314

Pattern: 60-40

Name of the Subject Teacher: Dr.R.S.Deore.

Sr. No.	Objective
1	Understanding Graphics Concept
2	Study the various graphics techniques
3	Study the various graphics algorithms
	Outcomes
1	Differentiate between interactive and non-interactive graphics
2	Study line Drawing and Circle Drawing techniques and algorithms.
3	Perform 2D and 3D transformation on different images.
4	Know about detail working of 2D and 3D clipping and windowing.
5	Understand raster graphics and hidden surface elimination.

Department: Computer Science

Name of Course: T.Y.B.Sc.

CourseCode: CS- 315

Pattern: 60-40

Name of the Subject Teacher: Mr.J.B.kapade.

Sr. No.	Objective
1	The course is designed to provide Basic knowledge of Python.
2	Python programming is intended for software engineers, system analysts, program managers and user support personnel who wish to learn the Python programming language.
3	To learn how to design and program Python applications.
4	To develop problem solving skills and their implementation through Python.
5	Master the fundamentals of writing Python scripts
	Outcomes
1	At the end of the course, the student will be able to Explain basic principles of Python programming language
2	Construct and apply various filters for a specific task.
3	Apply the best features of mathematics, engineering and natural sciences to program.real life problems.

Department: Computer Science

Name of Course: T.Y.B.Sc.

CourseCode: CS- 316

Pattern: 60-40

Name of the Subject Teacher: Mr.Amit.D.Umbre

Sr. No.	Objective
1	To learn Object Oriented Design with JAVA
2	Ability to write computer program to solve specific program
3	To handle abnormal termination of a program using exception handling
	Outcomes
1	Get knowledge of JDK environment
2	Explore polymorphism using method overloading and method overriding
3	Understand the different aspects of hierarchy of classes and their extensibility
4	Understands the concept of streams and files
5	Write programs for handling run time errors using exceptions

Department: Computer Science

Name of Course: T.Y.B.Sc.

CourseCode: CS- 321

Pattern: 60-40

Name of the Subject Teacher: Dr.Rupali.P.Patil

Sr. No.	Objective
1	To understand Operating system concepts and services
2	To understand the concept of a CPU scheduling, memory management,
	Disk Drum.
3	Scheduling and deadlock.
	Outcomes
1	Students should familiar with Operating System Services.
2	Understand CPU scheduling algorithms, memory Management
	Techniques, Disk Drum Scheduling algorithms, Deadlock preventions and avoidance.
	and avoidance.
3	Introduction to android operating systems – its architecture, applications and uses.

Department: Computer Science

Name of Course: T.Y.B.Sc.

CourseCode: CS- 322

Pattern: 60-40

Name of the Subject Teacher: Miss. Sayali.S. Nandan

Sr. No.	Objective
1	To teach fundamental concepts of RDBMS (PL/PgSQL)
2	To teach database management operations
3	Be familiar with the basic issues of transaction processing and concurrency control
4	To teach data security and its importance
	Outcomes
1	On completion of the course, student will be able to– Design E-R Model for given requirements and convert the same into database tables.
2	Use database techniques such as SQL & PL/SQL.
3	Explain transaction Management in relational database System.
4	Use advanced database Programming concepts

Department: Computer Science

Name of Course: T.Y.B.Sc.

CourseCode: CS- 323

Pattern: 60-40

Name of the Subject Teacher: Dr.S.N.Kotkar.

Sr. No.	Objective
1	This paper helps to understand How network works?• & types of networks & its applications.
2	It helps to understand the various models.
3	It helps to understand various layers & their functionality
4	It get the idea of how cryptography works
	Outcomes
1	After completion of the course: Students understand the information exchange done across the network with the help of OSI & TCP/IP models.
2	Student understands how errors are captured & handled in network.
3	Student understands various attack & its prevention techniques.

S.S.V.P.Sanstha's L. K. Dr. P. R. Ghogrey Science College, Dhule Department: Computer Science Name of Course: T.Y.B.Sc. CourseCode: CS- 324 Pattern: 60-40

Name of the Subject Teacher: Dr.R.S.Deore.

Sr. No.	Outcomes
1	Understanding the use of Sets, Relations and Graphs.
2	Understand Languages in TCS
3	Introduction of Regular Languages and Expressions.
4	Understanding Pumping Lemma and its applications.
5	Explore the knowledge of Pushdown Automata.
6	Understanding Normal Forms with Examples.
7	Understanding Turing Machine.

Name of Course: T.Y.B.Sc.

CourseCode: CS- 325

Pattern: 60-40

Name of the Subject Teacher: Mr.J.B.kapade.

Sr. No.	Objective
1	The course is designed to provide advance knowledge of Python
2	Python programming is intended for software engineers, system analysts, program managers and user support personnel who wish to learn the Python programming language.
3	To learn how to design and program Python applications.
4	To develop problem solving skills and their implementation through Python.
5	Master the fundamentals of writing Python scripts
6	To develop the ability to write database applications in Python
	Outcomes
1	Explain basic principles of Python programming language
2	Implement object oriented concepts, database applications.
3	Construct regular expressions for pattern matching and apply them to various filters for a specific task.
4	Design and implement Database Application and Content providers
5	Apply the best features of mathematics, engineering and natural sciences to program real life problems.

Department: Computer Science

Name of Course: T.Y.B.Sc.

CourseCode: CS- 326

Pattern: 60-40

Name of the Subject Teacher: Mr.Amit.D.Umbre.

Sr. No.	Objective
1	To design User Interface using Swing and AWT
2	Learn the advanced concept of java
3	To aware about the applet programming
	. Outcome
1	Program using graphical user interface with Swing classes
2	Handle different kinds of events generated while handling GUI components
3	Create programs using menus and dialog boxes
4	Program to create applets
5	Understand advanced java concepts like JDBC, Java Beans

Name of Course: M.Sc.

CourseCode: CS-101

Pattern: 60-40

Name of the Subject Teacher:Mr.Kishore G.Desale

Sr. No.	Objective
1	The course emphasizes the understanding of the fundamentals of relational systems including data models, database architectures, and database manipulations.
2	To develop conceptual understanding of database management system
3	To understand how a real-world problem can be mapped to schemas
4	To educate students with different Database Languages.
5	Understand the needs of database processing and learn techniques for controlling the consequences of concurrent data access.
	Outcome
1	To analyze Database design methodology.
2	Acquire knowledge of fundamentals of Database Management System
3	Analyze the difference between traditional file system and DBMS.
4	To deal with different Database languages.
5	Draw various data models for Database, writing and executing queries to get expected results.

Name of Course: M.Sc.

CourseCode: CS-102

Pattern: 60-40

Name of the Subject Teacher: Dr.Swati P. Patil

Sr. No.	Objective
1	To learn fundamentals of Grammars and Languages
2	To understand the relation between Regular Language and Finite Automata and machines.
3	To learn how to design Automata's and machines as Acceptors, Verifiers and Translators.
4	To understand the relation between Contexts free Languages, PDA and TM.
5	To learn how to design PDA as acceptor and TM as Calculators.
6	To understand the decidability and complexity measures.
	Outcomes
1	Understand, design, construct, analyse and interpret Regular languages, Expression and Grammars.
2	Design different types of Finite Automata and Machines as Acceptor, Verifier and Translator
3	Understand, design, analyse and interpret languages, Expression and Grammars.
4	Design different types of Push down Automata and Turing Machine.

Name of Course: M.Sc.

CourseCode: CS-103

Pattern: 60-40

Name of the Subject Teacher: Mr.Ashok A.Pawar

Sr. No.	Objective
1	understand different types of operating systems and the concepts that underlies operating systems.
2	learn the fundamental concepts and algorithms that will be used in existing commercial operating systems.
3	understand the issues related to protection and security.
	Outcomes
1	understand different types of operating systems.
2	gain extensive knowledge on principles and modules of the operating systems.
3	understand key mechanisms in the design of operating systems modules.
4	understand process management, thread management, memory management, file management and deadlock handling.
5	compare performance of different processor scheduling algorithms
6	produce algorithmic solutions to process synchronization problems
7	understand the issues related to protection and security.

Name of Course: M.Sc.

CourseCode: CS-104

Pattern: 60-40

Name of the Subject Teacher: Mr.Jitendra B.Kapade

Sr. No.	Objective
1	To learn fundamentals of Java programming language and its constructs.
2	To understand concept of object-oriented programming concept using Java.
3	To study the concept of the Inheritance, Interfaces, Lambda Expressions, and Inner Classes.
4	To understand the concept of the Exceptions and Generic Programming
5	To learn about the Graphics Programming, Event Handling, Swing Components, and Database Programming
	Outcomes
1	To understands the fundamentals of Java programming language and its constructs.
2	To understand concept of object-oriented programming concept using Java.
3	To implement the applications using the concept of the Inheritance, Interfaces, Lambda Expressions, and Inner Classes.
4	To design and implement the real-world application using the concept of the Exceptions and Generic Programming
5	To understand how to use concept of the Graphics Programming, Event Handling, Swing Components, and JDBC in their application.

Name of Course: M.Sc.

CourseCode: CS-301

Pattern: 60-40

Name of the Subject Teacher: Dr. Shamkant N. Kotkar

Sr. No.	Objective
1	The nature of software development and software life cycle process models.
2	Explain methods of capturing, specifying, visualizing and analyzing software requirements.
3	Understand concepts and principles of software design and user-centric approach and principles of effective user interfaces.
4	To know basics of testing and understanding concept of software quality assurance and software configuration management process.
5	Understand need of project management and project management life cycle.
6	Understand project scheduling concept and risk management associated to various type of projects
	Outcomes
1	Understand and demonstrate basic knowledge in software engineering
2	Define various software application domains and remember different process model used in software development.
3	Explain needs for software specifications also they can classify different types of software requirements and their gathering techniques.
4	Convert the requirements model into the design model and demonstrate use of software and user interface design principles.

Department: Computer Science

Name of Course: M.Sc.

CourseCode: CS-302

Pattern: 60-40

Name of the Subject Teacher: Dr. Rupali P.Patil

Sr. No.	Objective					
1	To comprehend evolution of decision making, operational vs decision support system and the concept of data warehouse.					
2	To understand transactional and analytical processing.					
3	Significance of analytical processing and importance of data pre-processing.					
4	Learn various data pre-processing techniques, methods					
5	Understand and apply various techniques/algorithms to obtain meaningful patterns from data (Association mining, classification and clustering)					
	Outcomes					
1	Explain organization of data warehousing and data marts.					
2	Differentiate between OLTAP and OLAP					
3	Apply data pre-processing techniques					
4	Write basic algorithms for extracting patterns from data (association mining, classification and clustering)					
5	Solve problems related with various aspects of data mining.					

Name of Course: M.Sc.

CourseCode: CS-303

Pattern: 60-40

Name of the Subject Teacher: Mr.Rahul D.Chaudhari

Sr. No.	Objective / Outcomes					
1	Designing desktop And Web Application.					
2	Implement Object Oriented For Designing.					
3	To study the impact of Internet in facilitating a truly distributed, wide area and highly accessible computing environment.					
4	To explore various web-related technologies and to gain appreciative knowledge of how these technologies synergize with one another to enable ubiquitous access of information.					
5	To examine the analysis, design and implementation techniques required to develop the network, enterprise and Internet based information systems.					

Name of Course: M.Sc.

CourseCode: CS-304

Pattern: 60-40

Name of the Subject Teacher: Mr.Kishor G.Desale

Sr. No.	Objective / Outcomes					
1	Γο develop windows presentation foundation.					
2	To develop applications using tools like MS Visual Studio.					
3	Design, develop and test software systems for world-wide network of computers to provide solutions to real world problems.					
4	To develop programming attitude to serve as software developer in IT industry.					
5	To provide advanced and in-depth knowledge of Information Technology and its applications.					

Name of Course: M.Sc.

CourseCode: CS-201

Pattern: 60-40

Name of the Subject Teacher: Mr.Rahul.D.Chaudhari

Sr. No.	Objective / Outcomes				
1	To Understand Advance Concept in Data Management.				
2	To Understand Data Base Concepts And Structures, query languages.				
3	To Develop programs using java collection API as well as java Standard Library.				
4	Create animation & events based upon advanced java concepts.				
5	To inculcate knowledge on Java Programming concepts.				

Name of Course: M.Sc.

CourseCode: CS-202

Pattern: 60-40

Name of the Subject Teacher: Mr.Kishor .G.Desale

Sr. No.	Objective / Outcomes				
1	Ability To Apply Knowledge, Representation, Reasoning And Machine Learning Technique To solve Real World Problem.				
2	Design and evaluate various machine learning algorithm.				
3	Use machine learning methods for multivariate data analysis in various scientific fields.				
4	To Acquire fundamental knowledge of learning theory.				
5	To apply appropriate Machine Learning Techniques for analysis, forecasting, categorization and clustering of the data.				

Name of Course: M.Sc.

CourseCode: CS-203

Pattern: 60-40

Name of the Subject Teacher: Dr.Swati.P.Patil

Sr. No.	Objective / Outcomes				
1	To Learn Basic Data Structure Used In Compiler Construction.				
2	To learn Software Tools Used In Compiler Construction Lexical Analyser.				
3	Students will get the concepts of different Parsing techniques and Construction of syntax.				
4	An understanding of professional, ethical, legal, security, and social issues and responsibilities for the computing profession.				
5	An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computational systems.				

S.S.V.P.Sanstha's L. K. Dr. P. R. Ghogrey Science College, Dhule Department: Computer Science Name of Course: M.Sc. CourseCode: CS-204 Pattern: 60-40

Name of the Subject Teacher: Mr.Ashok.A.Pawar.

Sr. No.	Objective / Outcomes				
1	Ability To Analyze The Performance Of Algorithm.				
2	Ability To Chose Algorithm Design For Solving Problems.				
3	An ability to design, implement and evaluate computer-based systems, processes, components or programs to meet desired needs within realistic constraints of time and space.				
4	A recognition of the need for and an ability to engage in life-long learning and continuing professional development.				
5	An ability to analyze a problem and identify and define the computing requirements appropriate for its solution under given constraints.				

Name of Course: M.Sc.

CourseCode: CS-401

Pattern: 60-40

Name of the Subject Teacher: Mr.Jitendra B.Kapade

Sr. No.	Objective / Outcomes				
1	To Understand current methods for statistical approaches to machine translation.				
2	Understanding semantics and pragmatics of English language for processing.				
3	Writing programs in Python to carry out natural language processing.				
4	Students will gain an in-depth understanding of the computational properties of natural languages and the commonly used algorithms for processing.				
5	The course examines NLP models and algorithms using both the traditional symbolic and the more recent statistical approaches.				

S.S.V.P.Sanstha's L. K. Dr. P. R. Ghogrey Science College, Dhule Department: Computer Science Name of Course:M.Sc. CourseCode: CS-402 Pattern: 60-40

Name of the Subject Teacher: Ms.Vaishali S. Patil

Sr. No.	Objective / Outcomes				
1	To Understand basic network terminology.				
2	To learn higher abstraction web services.				
3	To study data link layer concepts design ,issues and protocols.				
4	To classify the routing protocols and analyze how to assign the Ip address for given network.				
5	Gain core knowledge of networking.				

Name of Course: M.Sc.

CourseCode: CS-403

Pattern: 60-40

Name of the Subject Teacher: Dr.Rupali P.Patil

Sr. No.	Objective / Outcomes					
1	To get Knowledge Data Processing and Data Quality.					
2	Students can solve real world problems.					
3	Understand the functionality of the various data mining components.					
4	Describing different methodologies used in data mining.					
5	Develop skill in selecting data mining algorithms for solving problems.					

Department of Environment Science

B.Sc_Environment Science Programme Outcome

Sr.No.	Subject	Course objective	Learning outcome	Programme
	Code/			Implemaented
	Class			From
1	Envi-101	To acquaint students with	Students will be able to: • Understand about the concept of environment, their structure & types, different components and their functions.	June 2018
	F.Y.B.Sc	basic concepts of		CBCS pattern
		Environment & their		
		components	• Understand about the	
			evolution theories of universe, elements, origin of life and life	
			forms.	
			• Aware about social environment, understanding the	
			relation between man &	
			environment.Aware about global	
	environmental issue	environmental issues and		
			possible solution associated for the same.	
2	Envi-102	To acquaint students with basic concepts of Natural	• Understand the concepts of	June 2018
	F.Y.B.Sc	resources & their	natural resources, their types and importance	CBCS pattern
		importance	• Understand the detailed information about	
			biogeochemical cycles, their	
			role & function in the	
			environment with a-biotic and biotic components.	
			• Aware about mining activity	
			and their impact on environment through some case	
			studies. • Understand the role and	
			function of O2& CO2 with	
			complete mechanism through	
			oxygen cycle, carbon cycle, photosynthesis, GHG and ozone	
			layer depletion.	
			• Understand the concepts of lithosphere, soil, soil formation,	

			 soil profile, ecosystems. Aware about soil erosion, importance of soil conservation, food chain, food web and productivity 	
3	Envi-103 F.Y.B.Sc	To acquaint with various laboratory techniques used in Environmental Science	 Students are able to: Understand the concepts of water sampling with preservation techniques Understand the physical, chemical and biological properties of water samples with water quality standards. To determine the pH, electrical conductivity of water as well as soil which help to understand the nature of particular water and soil. Estimate the solids from water to evaluate their effects on humans. To determine Dissolved oxygen from water body which help to understand the 	June 2018 CBCS pattern
4	Envi-201 F.Y.B.Sc	To acquaint students with concepts of Earth formation & Environmental issues	 function of water body Students are able to: Understand the concepts Earth Process, classification and formation of rocks, their movements beneath the earth with tectonic plates and their effects on lithosphere. Understand the concepts of environmental pollution, their sources and effects on biotic community. Aware about environmental issues and their monitoring for minimizing the environmental pollution Understand the concept of environmental education, its need and importance. Aware about objectives and principles of environmental 	June 2018 CBCS pattern
			education	
---	----------------------	---	--	------------------------------
5	Envi-202 F.Y.B.Sc	To acquaint students with basic concepts of Renewable & Non-renewable resources	 Students are able to: Understand the concepts of Water, Land forest and Energy resources. Aware about over utilization of surface & ground water, benefit and problem associated with water availability, conflicts over water. Understand about the use and 	June 2018 CBCS pattern
			 over exploitation of forest, causes and effects of forest, timber extraction and mining. Aware about importance of natural resource through some case studies like "Chipko Movements" and "Sardar Sarovar Paoject" Understand the concept of equitable use of natural resources for sustainable lifestyle 	
6	Envi-203 F.Y.B.Sc	To acquaint with various laboratory techniques used in Environmental Science for water & soil analysis	 Students are able to: To determine the chemical properties of water like acidity, alkalinity, turbidity, hardness to evaluate their impacts on biotic community. Understand the physical, chemical and biological properties of water samples with water quality standards. To determine the pH, electrical conductivity of water as well as soil which help to understand the nature of particular water and soil. Estimate the solids from water to evaluate their effects on humans 	June 2018 CBCS pattern
7	Envi-301 S.Y.B.Sc	To acquaint students with basic concepts of Ecology & Environment	Students are able to: • Understand about the concept of ecology, their structure & types, different	June 2019-20 CBCS pattern

			 components and their functions. Understand about the a-biotic, biotic factors & their relation to each other. Aware about ecosystem, function & components of ecosystem and their stability. Aware about human population and population ecology. 	
8	Envi-302 S.Y.B.Sc	To acquaint students with basic concepts of environmental microbiology	 Students are able to: Understand the concepts of environmental microbiology, their types and importance Understand the detailed information about microscopy and their application. Acquired the skill of staining techniques for isolation and identification of microorganism. Understand the Physical, Chemical and Biological Methods of isolating pure culture. 	June 2019-20 CBCS pattern
9	Envi-303 S.Y.B.Sc	To acquaint with various laboratory techniques used in Environmental Science	 Students are able to: Understand the concepts of microscopy, aware about microbiological equipments. Prepare microbial media with different proportion. To prepare the slide using different staining techniques to identify microorganism from soil and curd Aware about Ecological adaptations in Wetland plants & Mesophytes. To determine temperature, wind profile & light intensity using environmental instruments. To determine physical & chemical parameters of solid 	June 2019-20 CBCS pattern
10	Envi-401	To acquaint students with	waste.Students are able to:	June 201-20

	S.Y.B.Sc	social environment & their conservation	 Understand the concepts of social environment & their importance. Aware about environmental impact assessment process & its importance. Understand about the forest resource and its conservation for sustainable development. Aware about importance wild life conservation and its importance. Understand the concept of environmental lawas. 	CBCS pattern
11	Envi-402 S.Y.B.Sc	To acquaint students with basic concepts of Applied & Industrial Microbiology	 Students are able to: Understand the concepts of air and water microbiology. Aware about food microbiology associated with food contamination, food infection and food poisoning. Understand about the sewage waste water microbiology. Aware about importance medical microbiology 	June 2019-20 CBCS pattern
12	Envi-403 S.Y.B.Sc	To acquaint with various laboratory techniques used in Environmental Science for water & soil analysis	 Students are able to: To determine the chemical properties of water like acidity, alkalinity, turbidity, hardness to evaluate their impacts on biotic community. Understand the physical, chemical and biological properties of water samples with water quality standards. To determine the pH, electrical conductivity of water as well as soil which help to understand the nature of particular water and soil. Estimate the solids from water to evaluate their effects on humans 	June 2019-20 CBCS pattern
13	Envi-501 T.Y.B.Sc	To acquaint students with basic concepts of pollution, pollutants, also about air,	Students are able to: • Understand the basic concept in pollution, pollutants, their	June 2020-21 CBCS pattern

		water or d	trues and offest	
		water and marine pollution	 types and effects. Understand air pollution with sources, causes and effects on biotic community. Understand water pollution with sources, causes and effects on biotic community. Understand Marine pollution with sources, causes and effects on biotic community Aware about their control strategies of different types of pollutions 	
14	Envi-502	To acquaint students with	Students are able to:	June 2020-21
	T.Y.B.Sc	basic concepts of bioethics and importance of biodiversity, information about different species and environmental movements	 Understand the concept of biodiversity, their types, classification and their social, ethical and optional values. Aware about bioethics, habitat destruction, fragmentation, degradation and pollution. Aware about endangered and endemic species in the world and in the India. Aware for the conservation of biodiversity through In-situ and Ex-situ. Study of major environmental movements (case study) associated with environment and biodiversity conservation. 	CBCS pattern
15	Envi-503	To acquaint students with	Students are able to:	June 2020-21
	T.Y.B.Sc	basic concepts of basics in environmental toxicology	 Understands the concept of toxicology, toxicants, their exposure with time and dose, concept of carcinogen and mutagen. Study the mechanism of bioaccumulation, biomagnifications, acute and chronic toxicity. Understand the factors affecting the toxicity Study the toxicity of gaseous pollutants like CO, NOx, SOx and petroleum solvents 	CBCS pattern

16	Envi-504	To acquaint students with	Students are able to:	June 2020-21
	T.Y.B.Sc	basic concepts of	• Understand the fundamental of remote sensing and their use	CBCS pattern
		fundamental of RS, sensors,	in environment	
		satellite and GIS	segments.	
		satellite and OIS	• Study of different sensors with	
			their principles and working.Understand the construction	
			and working of satellites with	
			different resolution.	
			• Interpreted the image using	
			different visual and digital	
			recognition elements.	
			• Understand the concept of	
			GIS, data using in GIS,	
			scanning, digitization and use of GPS.	
17	Envi-505	To acquaint students with	Students are able to:	June 2020-21
1/		-	• Understand the fundamental	
	T.Y.B.Sc	basic concepts of Air quality	of air quality monitoring.	CBCS pattern
		and its monitoring techniques	• Sound knowledge of air	
			pollutants and its adverse	
			effects on biotic community.	
			• Preparation of chemicals and	
			reagent for the analysis of NOx and SOx.	
			• Knowledge about instruments	
			used in air quality monitoring	
18	Envi-506	To acquaint students with	Students are able to:	June 2020-21
	T.Y.B.Sc	basic concepts of	• Understanding the concept of	CBCS pattern
	1.1.2.50	environmental	environmental biotechnology	SE SS Puttorn
		biotechnology, biomass,	and its global impacts on different field like agriculture,	
		biomass energy and	health care and environment.	
		bioremediation	• Study the composition of	
			biomass and its types.	
			• Study the biomass energy gain	
			from petroleum plants,	
			hydrocarbon, liquid fuel and	
			biogas.	
			• Understand the concept of bioremediation with different	
			micro-organisms	
19	Envi-507	To acquaint with various	Students are able to:	June 2020-21
		laboratory techniques used in	• Understanding the concept of	
	T.Y.B.Sc	Environmental	sampling and its preservations	CBCS pattern

		Science	 Demonstrate on pH and EC meter for monitoring the pH and electrical conductivity of water and soil samples. Analyse the water with different parameters like solids, available & residual chlorine, and phosphate for determining its quality. Understand and study of water quality criteria for drinking as well as for waste water. 	
20	Envi-508 T.Y.B.Sc	To acquaint with various laboratory techniques used in Environmental Science	 Students are able to: Understand and study of Air and Noise quality criteria for determining the pollution level. Demonstrate on RDS sampler for monitoring of oxides of nitrogen, oxides of sulphur, SPM and RSPM. Analyse the chlorophyll contents for estimation of pollution load. Understand and study of adaptations of some plants as a pollution resistant 	June 2020-21 CBCS pattern
21	Envi-509 T.Y.B.Sc	To acquaint with various laboratory techniques used in Environmental Science	 Students are able to: Understand and study of metal digestion and analysis. Demonstrate on instruments which are used in environmental analysis like Spectrophotometer, flame photometer, gas chromatography. Analyse the selected metal for estimation of pollution load. Understand and study of construction and working of ETP for waste water treatment. 	June 2020-21 CBCS pattern
22	Envi-601 T.Y.B.Sc	To acquaint students with basic concepts of noise, solid waste, thermal and radioactive pollution	 Students are able to: Understand Noise pollution with sources, causes and effects on biotic community. Understand Solid waste 	June 2020-21 CBCS pattern

			 pollution with sources, causes and effects on biotic community. Understand Thermal pollution with sources, causes and effects on biotic community. Understand Radioactive pollution with sources, causes and effects on biotic community. Aware about their control strategies of different types of pollutions 	
23	Envi-602 T.Y.B.Sc	To acquaint students with basic concepts of importance of biodiversity conservation through forest and wild life protection	 Students are able to: Understand the international agreements associated with environmental awareness. Understand and study of forest and their types, relation between forest and global warming, carbon sink, nature pollution indicators. Understand and study the forest conservation through laws. Concept of forest fire, forest population heavy loss of green beelt and forest research in India. Understand the strategies for wildlife conservation through study of depletion of wildlife and their effects 	June 2020-21 CBCS pattern
24	Envi-603 T.Y.B.Sc	To acquaint students with basic concepts of soil , air, water toxicology with biotransformation	 Students are able to: Understand the basics of soil toxicology. Study of toxic elements of air and water like Lead, Mercury, Arsenic, Chromium, Cadmium, Nickel, Bismuth, Zinc, Copper, Manganese, etc. Aware about toxicity of pesticides and their effects. Understand the concept of eco-toxicology, public health, animals in relation to human 	June 2020-21 CBCS pattern

			health.	
25	Envi-604 T.Y.B.Sc	To acquaint students with basic concepts of Vector and raster data use in RS & GIS, applications of RS & GIS in different field	 Students are able to: Understand the analysis of vector data using buffering. Study the analysis of raster data using overlay features. Understand and study of applications of RS and GIS in agriculture field. Understand and study of applications of RS and GIS in social science & Geo- disaster management field. Understand and study of applications of RS and GIS in forestry, ecology, and watershed & water resource management 	June 2020-21 CBCS pattern
26	Envi-605 T.Y.B.Sc	To acquaint students with basic concepts of Water quality and its monitoring techniques.	 Students are able to: Understand the fundamental of water quality monitoring. Sound knowledge of water pollutants and its adverse effects on biotic community. Knowledge and skill about water quality standards. Knowledge about standard methods used in water quality monitoring. 	June 2020-21 CBCS pattern
27	Envi-606 T.Y.B.Sc	To acquaint students with basic concepts of bioremediation, bioleaching and hazards of environmental engineering	 Students are able to: Understanding the concept of toxicity of bioremediation through metal and dyes. Study the concepts of xenobiotics. Study the process of bioleaching using different micro-organisms Understand the hazards in environmental engineering through growth inhibition and replacement of natural strains 	June 2020-21 CBCS pattern
28	Envi-607	To acquaint with various laboratory techniques used in	Students are able to: • Determine different	June 2020-21

I	T.Y.B.Sc	Environmental	parameters like ammonia,	CBCS pattern
	1.1.D.Sc	Science	 nitrates and sulphate from water samples to describe its quality. Demonstrate on turbidity meter to determine the water turbidity. Analyse the soil for measuring the chlorides for determining its quality. Understand and study of water quality criteria for drinking as well as for sewage waste water through BOD and COD. 	
29	Envi-608	To acquaint with various	Students are able to:	June 2020-21
	T.Y.B.Sc	laboratory techniques used in Environmental Science	 Understand and study of physical characteristics of soil like bulk density, water holding capacity, organic carbon, organic matter etc. Study and determining the atmospheric fungi for its effects on human Analyse the chlorophyll contents for estimation of pollution load. Understand and study of adaptations of different plant and animal species for survival in the environment. 	CBCS pattern
30	Envi-609 T.Y.B.Sc	To acquaint with various laboratory techniques used in Environmental Science	Students are able to: • Understand and study of satellite images using different characteristic like tone, texture, pattern, shape and size. • Demonstrate on instruments which are used in environmental analysis like Bomb calorimeter and HPLC. • Computation of environmental statistics through mean, mode,	June 2020-21 CBCS pattern
31			 median and variance. Understand and study of determination of selected metal for their toxicological effects. 	

Department of Geography

B.Sc. Geography Programme outcome

Sr.No.	Programme Outcome	Programme Specific Outcome
1	To Promote understanding of basic facts and concepts in Geography	1)To develop ability And To Acquiesce the knowledge of terms facts, concepts, Processes, techniques and Principles of Subject.
2	To Prepare the Students for seef earning as well as competitive examinateons.	2) To develop ability to apply the knowledge of geography in duff recent field
3	To develop Problem solving skills in students.	3)To Expose and to develop interest in the field of geography.
4	To develop preper aptitude towards the subjects.	 To develop. the skills requiredin the subject for the application. in society for different purposes.
5	To develop the students for the problem solving selated global issues.	TO develop the interest of students in relation to global warming sudden climate changes events.

Course	Outcomes
Gg101: Physical Geography-I (Lithosphere) (Part-I)	 To understand the surface of the earth & The Processes by which it is shaped both at the present as well as in the past. To acquaint the students with utility & application of physical Geography in different areas & environment.
Gg102 physical Geography –II (Atmosphere) (part-I)	 To understand different charaeteristies & processes of Atmosphere To understand various applications of climatology To acquaint the basic knowledge of elements of processes in atmosphere.
Gg103 Practical Geography (cartographiTechniques) (part-I)	 To understand the concept of scale at the initial stage To know how to draw the maps on various scale particularly the Techniques of drawing cartograms showing physical climatic & scientific attributes of the region.
Gg201 Physical Geography (lithosphere) (part-II)	 To understand impact of human activities on the environment. To study external forces operating on the earth surface. To enable students to aquire knowledge of their physical environment.
Gg201 Physical Geography (Hydrosphere) (part-II)	 To understanding properties & movement of ocean water To introduce the students to the basic concepts of oceanography To make the student aware about the application of oceanography in different areas.
Gg201 Physical Geography (map projection) (part-II)	 To enable the students to use various projection. A cquaint the students with basic projection & preparation of maps. To aequaint the students with the principles of classification & choice of map projection.
Gg301 Environmental Geography	 To acquaint the students with fundamental concepts of environmental Geography To aware the student about the processes & pattern in the nodural environment To make aware the students about the judicious use of resources.

Gg302 Physical Geography of Maharashtra	1)To Understanding the border of administrative divisions of Maharashtra
	2)To understanding the properties of soils & natural vegetation
	of Maharashtra in different regions.
	3) To make aware the students about the judicious use of water
	resources.
Gg303 Interpretation of	1)To develop the interpretation skill among the students
Topographical, weather maps	2)To introduce the students about the information recorded on
& weather dada analysis	topographical & weather maps.
	3) To aquire various informations from the maps.
Gg304 Regional Planning &	1) To introduce general problems of regional development &
Development.	their application to rural areas.
	2) The student is able to explain the role of regional policy &
	desire the tools used to regional development support.3) To understanding of social & regional relation of the rural
	development.
Gg 401 Human Geography	1) To adopt & modify the environment under it's varied
	conditions from primitive life style to the modern living.
	2) To identify & understand environment & population in
	terms of their quality & spatial distribution pattern
	3) To comperehend the contemporary issues faeing the
	global community.
Gg402 socio-Economic	1) To acquaint the student with basic knowledge of
Geography of Maharashtra	maharastra state.
by Gps.	2) To acquaint the student with prospects & problems of
	agriculture, industries, trade & transport of Maharashtra.
Gg403 surveying & area	1) To develop the surveying skill among the students.
measurement by Gps.	2) To introduce the students about working & practical utility
incustrement by ops.	of Gps.
	3) To acquaint the student about the filed survey.
Gg404 Field Technique &	1) To aware students that how dose a field work form an
survey base Project report	important part of geographical learning
	2) To develop the skill of selection of appropriate technique
	for field study
	3) To develop the ability of analysis interpretation & report
	writing based upon the data collected during a field study.
Gg501 Geomorphology	1)To understand the origin of various landforms

	2)To study the process of landforms development3) To help the students for preparation of competitive
Gg 502 Climatology	 examination. 1) To acquaint the students with basic knowledge of atmosphere, weather & climate. 2) To understand various weather phenomena 3) To identify climatic differentiation on the earth 4) To acquire the knowledge of weather forecasting.
Gg503 Oceanography	 To introduce students to basic concepts of oceanography To understanding the chemical, physical geological & biological processes which aet on the oceans surface & to recognize the submarine forms, the seawater composition & properties
Gg 504 Water Resource management	 1)To Judge surface & ground water resources. 2) To understand signi ficance of water resources for human development. 3) To condude the water resource management through scientific planning.
Gg 505 Remote Sensing & Gps	 To introduce the fundamentals of Remote sensing. To aware about the application of remote sensing in various field. To develop Gps usage skill in students.
Gg 506 Disaster management	 To understand impacts of disaster. To know the fundamental concepts of disaster management To acquire the knowledge of preparedness & mitigation To understand manifesting the mitigation.
Gg506 Disaster management	 To understand impacts of disaster. To know the fundamental concepts of disaster management. To aquire the knowledge of preparedness & mitigation. To understand manifesting the mitigation. To understand manifesting the of aerial photography & common applications for remote sensing using vertical aerial photography G2) Students will be able to demonstrate the understanding of properties & characteristics of aerial

	photography.
Gg508 Practical in morph metric analysis.	 To understand the concept of drainage system & it's morphology practically. To conclude the morphometric analysis by scientific methods. To encourage the students for morphometric research.
Gg509. practical in statical Techniques	1)To familiarize the students with statistical analysis & it's applications in Geography.
Gg 601 :Soil Geography	 Student will able to know the relationship between physical factors and soil. Student should know the various soil forming processes. Student learn the measures of soil conservation.
Gg. 602–Biogeography.	 To aware biogeographical issue among the student. To acquaint the students with fundamental concept of biogeography. To aware the student about the processes and development of plant and animals. To make aware the student about use of resources with prudence.
Gg. 603–Population Geography.	 To know the problems of population To learn the population policies in India resource. To understand the recent problems of population in the world as well as nation. To study the demographic structure of population in India. To know the methods in present the population data.
Gg. 604 (DSC Core IV) –Agricultural Geography.	 To introduce Agricultural systems. To make able the student to understand an influence of different physical and manmade factors on agriculture. To introduce Agricultural region and agro-climatic regions of India. To provide information about the worlds agricultural types. To make students aware about the importance of agricultural revolutions in Indian context. To know place of agriculture in economy of India.
Gg. 605 (DSC SEC) –Geographical Information System.	 Το ιντροδυχε τηε στυδεντσ αβουτ νεω αδωανχεδ φιελδ ιν Γεογραπηψ. To develop the skill of new technique in the field GIS. To acquaint the students to components of GIS.

□ To familiarize with the tools and application of GIS

Department of Mathematics

B.Sc. Mathematics Programme outcomes

Sr. No	General Objectives of the Course	Learning Outcomes	Program Implemented From
1	MTH-101 "Matrix Algebra" A primary need for the establishment of this course is to understand the basic knowledge and applications of matrices in various fields.So, the main objective is to teach mathematical approaches and modeles to grow mathematical skill, to improve mathematical thinking and to impove choice making power of the students.	 Upon successful completion of this course the student will be able to : a) understand concepts on matrix operations and rank of the matrix. b) understand use of the matrix for solving the system of linear equations. c) understand basic knowledge of the eigen values and eigen vectors . d) apply Cayley-Hamiton theorem to find the inverse of the matrix. e) know the matrix transformation and its applications in rotations, reflection , translation. 	Jun-2018
2	MTH-102 " Calculus" The basic need of this course is to understand the concepts and applications of calculus. Also, this course will improve problem solving and logical thinking abilities of the students. By learning this course students can use the	Upon successful completion of this course the student will be able to: a) understand basic concepts on limits and continuity. b) understand use of differentiations in various theorems. c) know the mean value	Jun-2018

	concept of calculus to develop different mathematical models.	theorems and its applications. d) make the applications of Taylor's, Maclaurin's theorem. e) know the applications of calculus.	
3	MTH-103(A) " Coordinate Geometry" General objectives are to study two-dimensional geometry, translation and rotation of axes and it's used to convert in standard 2-d forms. Also, to study three- dimensional geometry, sphere, cone and cylinder along with their properties and interpretations.	Students can visualize geometrical concept and draw two dimensional figures and can find their standard forms of shifting and rotation of axes. Students also can draw three dimensional figures and their equations particularly sphere, Cone and cylinder.	Jun-2018
4	MTH-103(B) " Graph Theory" To introduce the concept of graphs, directed graphs and trees the students and introduce their applications in computer science.	 a) students can visualize the concept of graphs by means of diagrams. b) students can make use of graphs in network problem etc. c) students can solve the complicated network problems by using spanning trees. d) students can able to run the different algorithms and flowcharts diagrams. 	Jun-2018
5	MTH-201 "Ordinary Differential Equations" The basic need of this course is to understand the different methods of solving differential equations and their applications to solve problems arrives in engineering and technology.	Upon successful completion of this course the student will be able to: a) understand basic concepts in differential equations. b) understand method of solving differential equations. c) understand use of differential equations in various fields.	Jun-2018

6	 MTH-202 "Theory of Equations" To study 1. Divisibility of numbers and roots of polynomial equations. 2. Relations between roots and coefficients of polynomials of degree ≤ 4. 3. Roots of cubic equations by using Cardon's method, biquadratic equations by Descarte's method and roots of polynomial equations by Newton's method. 	Students can find out roots of an equation of degree less than or equal to five. Theory of equations is highly useful in various subjects like algebra, linear algebra, calculus, ordinary and partial differential equations etc.	Jun-2018
7	MTH-203(A) " Laplace Transform" The basic need of this course is to understand the concepts and applications Laplace transforms. The concepts and methods are useful for solving differential equations.	Upon successful completion of this course the student will be able to: a) understand basic concepts on Laplace and universe Laplace transforms. b) understand convolution theorem. c) understand use of Laplace transform in solving differential equations.	Jun-2018
8	MTH-203(B) "Numerical Analysis" The students will be able to understand the basic numerical analysis which is applicable to problems like finding zeros of algebraic equations, interpellation, curve fitting and solution of first order differential equations. Students will also understand that when exact solutions are difficult to obtain, then approximate	Student will be able to: a) understand basic concepts of methods of solutions of equations viz. Bisection, iteration, Newton-Raphson methods and method of false position. b) understand methods of curve fitting viz. Gauss's forward and backward difference formulae and Lagrange's interpolation formula. c) use of curve fitting such as	Jun-2018

	solutions can be obtained by using numerical methods.	 least square, polynomial and exponential fitting for set of given data. d) use Taylor's series. Euler's method. Modified Euler's method., Runge kutta methods for solving ordinary differential equations. 	
9	MTH-301 " Calculus of Several Variables " This is the second course in the calculus series after a course of Calculus in F.Y.B.Sc. for science students. In this course we discuss functions of two and more variables along with their series expansions and extreme values. We also discuss integration techniques as well as applications of integrals.	Upon successful completion of this course the student will be able to understand: a) limit and continuity of functions of several variables. b) fundamental concepts of multivariable Calculus. c) series expansion of functions. d) extreme points of function and their maximum, minimum values at those points. e) meaning of definite integral as limit as sums. h) how to solve double and triple integration and use them to find area by double integration and volume by triple integration.	Jun-2019
10	MTH-302(A) "Group Theory" A primary objective of this course is to understand algebraic structures and their properties. Doing this one can use these structures to solve problems arises in many branches of Mathematics such as theory of equations, theory of numbers, Geometry etc. This enable students to grow their mathematical skill and used them to apply in	Upon successful completion of this course the student will be able to: a) understand group and their types which is one of the building blocks of pure and applied mathematics. b) understand Lagarnge, Euler and Fermat theorem. c) understand concept of automorphism of groups. d) understand concepts of homomorphism and	Jun-2019

	many	isomorphism. e) understand basic properties of rings and their types such as integral domain and field.	
11	MTH-302(B) " Theory of Groups and Codes " A primary need for the establishment of this course is to understand algebraic structures and their properties. Upon studying this one can use these sutures to solve problems arises in many branches of Mathematics and computer science such as theory of equations, theory of numbers, Geometry, theory of computations, cryptography etc. This enable students to grow their mathematical skill and used them to apply in many other branches of science and technology.	Upon successful completion of this course the student will be able to: a) understand group structures which is useful to understanding ideas of modern mathematics. b) understand solutions to polynomial equations. c) understand permutation groups. d) understand concepts of homomorphism and isomorphism. e) Students will understand basic concepts in coding theory.	Jun-2019
12	MTH-401 " Comlex Variables" A primary objective of this course is to make students aware of generalization of real number system and calculus. Analyticity and complex integrations are useful for applications. This course improves mathematical skill and ability to solve various integrations.	 a) The course is aimed to introduce the theory for functions of complex variables. b) Students will understand the concept of analytic function. c) Students will understand the Cauchy Riemann Equations. d) Students will understand harmonic functions. e) Students will understand complex integrations. f) Students will understand 	Jun-2019

		calculus of residues.	
		g) Students will acquire the	
		skill of contour integrations.	
13	MTH-402(A) "Differential	a) Students will aware of	Jun-2019
	Equations"	formation of differential	
	The main objective of this	equations and their solutions.	
	program is to cultivate	b) Students will understand	
	mathematical aptitude among	the concept of Lipschitz	
	students and nurture their	condition.	
	interest towards problem	c) Students will understand	
	solving aptitude by	method of variation of	
	introducing methods of	parameters for second order	
	solution of differential	L.D.E.	
	equations.	d) Students will understand	
	•	simultaneous linear	
		differential equations and	
		method of their solutions.	
		e) Students will understand	
		Pfaffian differential equations	
		and method of their solutions	
		f) Students will understand	
		difference equations and their	
		solutions.	
14	MTH-402(B) "Differential	a) Students will aware of	Jun-2019
14	Equations and Numerical	formation of differential	Juli-201 <i>3</i>
	Methods "	equations and their solutions.	
	The main objective of this	b) Students will understand	
	program is to cultivate	the concept of Lipschitz	
	mathematical aptitude among	condition.	
	students and nurture their	b) Students will understand	
	interest towards problem	method of variation of	
	solving aptitude by	parameters for second order	
	introducing methods of	L.D.E.	
	solution of differential	d) Students will understand	
	equations.	simultaneous linear	
		differential equations and	
		method of their solutions.	
		e) Students will understand	
		Pfaffian differential equations	

15	MTH-404 "Vector Calculus" The general objectives are to acquire skills of vector algebra, vector valued functions, operators like del and curl and line and surface integrals.	 g) Students will understand difference equations and their solutions a) understand scalar and vector products. b) understand vector valued functions and their limits and continuity and use them to estimate velocity and acceleration of partials. c) Calculate the curl and divergence of a vector field. d) Set up and evaluate line integrals of functions along 	Jun-2019
16	MTH-501 " Metric Spaces" 1. Introduction of metric as a generalization of distance function and basic concepts in metric spaces. 2. To explain the concept of sequence and complete metric space with their properties. 3. To discuss compactness, and sequential compact spaces and their properties along with continuity.	After studying this course, student should be able to: 1. Understand the Euclidean distance function on R" and appreciate its properties, and state and use the Triangle and Reverse Triangle Inequalities for the Euclidean distance function on R". 2. Explain the definition of continuity for functions from R" to IR" and determine whether a given function from R" to R"is continuous. 3. Explain geometric meaning of each of the metric space properties (M1) - (M3) and be able to verify whether a given distance function is a metric 4. Distinguish between open and closed balls in a metric space and be able to determine them for given metric spaces. 5. Define convergence for	Jun-2020

		 sequences in a metric space and determine whether a given sequence in a metric space converges. 6. State the definition of continuity of a function between two metric spaces. 	
17	 MTH-502 " Real Analysis-I" 1. To study the Riemann Integration. 2. To study the Mean value theorems of integral calculus 3. To study Improper integrals with finite limit and infinite limit. 4. To study the concept of Riemann integration and its properties. 5. To study Beta and Gamma Integrals 	After successful completion of this course, students are expected to: 1. Understand the structure of Riemann Integration. 2. Represent lattice in diagrammatic form. 3. Understand the Improper integrals with finite limit infinite limit their properties. 4. Learn the concepts of Beta and Gamma Integrals.	Jun-2020
18	 MTH-503 "Algebra" 1)To gain the basic concepts of groups like subgroups, normal, isomorphism of groups. 2)To understand basic concepts of rings like ideals, isomorphism of rings and polynomial rings. 	After successful completion of this course, students are expected to: 1) know the use Permutation Groups. 2) know normal Subgroups and group isomorphisms. 3) Know Ideals in rings, Quotient Rings and Isomorphism of Rings. 4) Know polynomial Rings and irreducibility of polynomials	Jun-2020
19	 MTH-504 "Lattice Theory" 1) To study the structure of poset and lattice. 2) To study the diagrammatic representation of lattice. 3) To study the terms Maximal element, Minimal 	After completing this syllabus students will able to: 1) Understand the structure of poset and lattice. 2) Represent lattice in diagrammatic form. 3) Understand the terms	Jun-2020

	alamant Craatast alamant	Maximal alamant Minimal	
	element, Greatest element, Least elements.	Maximal element, Minimal	
		element, Greatest element, Least elements.	
	4) To study the concept of ideals and its proportion		
	ideals and its properties.	4) Learn the concepts of	
	5) To study homomorphism of	ideals and their properties.	
	lattices.	5) Learn the concepts of	
	6) To study modular and	homomorphism.	
	distributive lattice and their	6) Understand modular and	
	inter-relation.	distributive lattice and their	
	7) To study complemented	inter- relation.	
	and relatively complemented	7) Understand complemented	
	lattice.	and relatively complemented	
		lattice	
20	MTH-505 " Integral	Learning After successful	Jun-2020
	Transforms"	completion of this course,	
	The goals for the course are	students are expected to:	
	1. To gain a facility with using	1. Know the use of Fourier	
	the transform, both specific	transform in Wave equation,	
	techniques and general	2. Solve Boundary Value	
	principles, and learning to	Problems, also problem on	
	recognize when, why, and	Heat-flow in semi-infinite bar.	
	how it is used.	3. Use Fourier transform in	
	2. Together with a great	communication theory and	
	variety, the subject also has a	signal analysis, image	
	great coherence, and the	processing and filters, data	
	hope is students come to	processing and analysis,	
	appreciate both.	solving partial differential	
		equations for problems on	
		gravity.	
		4. Students will be able to use	
		Z-transform in the	
		characterization of Linear	
		Time-Invariant system (LTI),	
		in development of scientific	
		simulation algorithms	
21	MTH-506(B) " Number	After successful completion of	Jun-2020
	Theory"	this course, students are	
	To study prime numbers and	expected to:	
	Diophantine equations,	1) solve Diophantine	
	Theory of congruence's,	equations.	
	Theory of congruence s,	cquations.	

	Perfect numbers, Fibonacci sequence and finite continued fractions.	 2) use Fermat's theorem, Euler's theorem and Wilson's theorem for finding remainders. 3) understand perfect, Mersenne and Fermat's numbers. 4) understand Fibonacci sequence. 5) solve Diophantine equations by using finite continued fractions. 	
22	MTH-601 "Measure Theory" The aim of this course is to learn the basic elements of Measure Theory. It is useful as it provides a foundation for many branches of mathematics such as harmonic analysis, theory of partial differential equations and probability theory.	 Learn measurable sets. Learn the concept of Sets of measure zero. Understand why a more sophisticated theory of integration and measure is needed. Show that certain functions are measurable. Understand properties of the Lebesgue integrals. 	Jun-2020
23	 MTH-602 "Real Analysis-II" 1. To study Sequence of real numbers, series function. 2. To study of Fourier series. Theory of Uniform convergence of sequence of functions and Cauchy's criteria for uniform con. of sequence of function. 	After successful completion of this course, students are expected to: 1. solve Convergence and divergence. 2. use Test for absolute convergence. 3. understand Fourier series for even and odd functions t, A understand Sine and cosine series in half range	Jun-2020
24	 MTH-603 "Linear Algebra" 1) To study vector spaces, basis and dimensions. 2) To study Linear transformation also Eigen value and eigen values. 	After successful completion of this course, students are expected to: 1) solve Rank and nullity theorem. 2) use Cayley Hamilton	Jun-2020

	3) To study diagonalization of matrices, congruences, Perfect numbers,	 theorem, Euler's theorem and finding Eigen values and Eigen vectors of linear transformation. a) understand Kernel and image of linear transformations. 4) understand Singular and non-singular linear transformations 	
25	MTH-604 " Ordinary and Partial Differential Equation" The main objective of this course is to provide the student with an understanding of the solutions and applications of ordinary differential equations. By using this theory and models students can apply their knowledge in real world. Prerequisite: F.Y.B.Sc. and S.Y.B.Sc. Mathematics.	 1) Know the exact differential equation and its solution. 2) Solve the exact differential equations by using integrating factor. 3) Solve the linear differential equation of second order by using various methods. 	Jun-2020
26	 MTH-605 "Graph Theory" 1. The course is oriented to those who want to advance structured and procedural programming understating and to improve operation on graphs. 2. The major objective is to provide students with understanding of graph, Trees. Matrix representation of graphs. 	After successful completion of this course, students are expected to: 1. Understanding a functional hierarchical code organization. Ability to define and manage graphs, connected graphs. 2. Understanding a concept of Cut set and cut vertices.	Jun-2020
27	MTH-606(B) " Operations Research" 1. To study linear programming problem (LPP).	After successful completion of this course, students are expected to: 1. solve the linear	Jun-2020

2. To study the simplex	programming problem by	
method to solve línear	graphical method and simplex	
programming problem.	method.	
3. To study the simplex	2. learn the unbounded,	
method for unbounded,	alternative and infeasible	
alternative and infeasible	solutions of LPP by graphical	
solutions of LPP.	and simplex method.	
4. To study the initial basic	3. understand the standard	
feasible solution of	and canonical form of LPP.	
transportation problem (TP).	4. find the optimal solution of	
5. To study the saddle point,	TP by MODI method.	
maximin-minimax principal,	5. solve the solution of	
two person zero sum game.	assignment problems by	
6. To study 2 x 2 games	Hungerian Method.	
without saddle point.	6. Understand the	
7. To study graphical method	unbalanced, balanced,	
to solve m x 2 and 2 x n	maximization, restricted AP	
games.	and alternative solution of AP.	
8. To study dominance	7. understand the saddle	
property.	point, maximin-miìnimax	
	principal, two person zero	
	sum game.	
	8. use of dominance property	
	to find the solution games	

Department of Mathematics

M.Sc Mathematics Programme outcomes

Sr. No	General Objectives of the Course	Learning Outcomes	Program Implemented From
1	 MT-101 Advanced Real Analysis Countable and uncountable sets, Infinite sets and the axioms of choice, Cardinal numbers and their arithmetic, Schroeder- Bernstein theorem, Cantors theorem and the continuum Hypothesis, Zorn's lemma, Well Ordering principle, Cantor set, Cantor like sets, The Lebesgue functions. Measure on the real line: Lebesgue Outer measure, Measurable sets, Regularity, Measurable functions, Borel sets and Lebesgue measurability. Integration of functions of a real variable: Integration of nonnegative function, The general integral, Integration of series, Riemann and Lebesgue integrals. Differentiation: The four derivatives. Functions of bounded variation. Lebesgue differentiation theorem, Differentiation and Integration. Differentiation of monotone function: Vitali covering theorem (lemma), Fundamental theorem for integral calculus for Lebesgue integral, Absolutely continuous functions. 	After successful completion of this course the student will be able to : a) understand concepts of Countability and countable sets b) understand the lebesgue measure and measurebale sets . c) understand the differntiablity and integrability of measurable functions .	June 2017
2	MT-102 Topology 1. Topological spaces and continuous functions: Topological spaces, Basis for topology. The order topology, subspace topology, closed sets and limit points, continuous functions, The product topology, Continuous functions, Metric topology, The quotient topology. 2. Connectedness and compactness: Connected spaces, connected sets in	After successful completion of this course the student will be able to: a) understand basic concept of topology. b) understand the concept of open and claosed sets. c) understand the continuity and separation axioms.	June 2017

	 the real line, components and path components, local connectedness compact spaces, Limit point compactness. 3. Countability and separation axioms: The countability axioms, The separation axioms, The Urysohn Lemma, Urysohn Metrization theorem. 4. The Tychonoff Theorem, Completely regular spaces. 		
3	 MT-103: Abstract Algebra Direct product of subgroups, Class equation, Cauchy's Theorem, Solvable groups, Sylow's Theorem, Jordan - Holder Theorem. Factorization, Euclidean domains, principal ideal domains, Unique Factorization domains, Polynomial rings, Roots of polynomials, factorization of polynomials. Noetherian rings, Hilbert basis Theorem. (10 H 	Students can visualize Group and subgroup ,Cauchy theorem. Understand the concept of polynomial ring and root of polynomials,factorization of polynomials.	June 2017
4	MT-104: Ordinary and Partial Differential Equations 1. Second Order L.D.E. with constant Coefficients: Basic theory of linear differential equations (L.D.E), the homogeneous and non-homogeneous L.D.E. with constant coefficients; finding C.F. and P.I. the method of undermined coefficients, Variation of Parameters, The Cauchy-Euler equation; Theorems on second order homogeneous L.D.E. 2. Linear PDE order one: Introduction, origin, derivation of PDE by removing arbitrary constant and function; Lagrange's method of solving $Pp + Qq$ = R ; Type-I, II, III, IV for solving $dx P =$ dy Q = d; Integral surfaces passing through a given curve. 3. Non-Linear PDE of order one : Complete integral, P.I., singular integral, general integral for PDE of first order; general method for solving PDE of order one and any degree, Charpit's method; Standard form when p and q are present. Clairaut's equation $z = px + qy + (, q)$; standard form when only p, q and z are	a) students can visualize the concept order and degree of differential equations. b) understand the concept of linear pde of order one. c) students can solve linear pde with constant and variable coefficient .	Jun-2017

5	present; Jacobi's method. 4. Linear PDE with constant coefficients: Homogeneous and non- homogeneous linear PDE with constant coefficients. Methods of finding C.F. and P.I. for non- homogeneous. Linear PDE. 5. PDE with variable coefficients: Introduction to PDE with variable coefficients and various types of solution; Laplace transformation, canonical forms, linear parabolic, hyperbolic and elliptic equations. Monge's method of integrating PDE. MT-105: Theory of Fuzzy sets 1. Fuzzy set theory: Introduction, Fuzzy versus Crisp, Fuzzy sets: Definition, different types, fuzzy -cuts	Upon successful completion of this course the student will be able to:	
6	and their properties, decomposition theorems. αset basic concepts, 2. Operations on Fuzzy sets: Extension principle for fuzzy sets, fuzzy compliments, t-norms and t- conorms, Definition of intersection and union by Hamacher, Yager's union and intersection of two fuzzy sets, intersection and union of two fuzzy sets as defined by Dubois and Prade, Combination of operations, Aggregation operations. 3. Fuzzy numbers and arithmetic: Introduction, Fuzzy numbers, Interval analysis, Fuzzy Arithmetic, Arithmetic operations on fuzzy numbers, lattice of fuzzy numbers. 4. Fuzzy relations: Introduction, Projections and cylindrical fuzzy relations, Composition, properties of Min-max composition, binary relations and their compositions, compatibility relation, Fuzzy equivalence relations, fuzzy ordering relation, Fuzzy morphisms. 5. Fuzzy logic: Fuzzy propositions, fuzzy quantifiers, Fuzzy hedges, Fuzzy implications, Inference from conditional fuzzy propositions. Generalization of hypothetical syllogism, Inference from conditional and qualified propositions. MT-201: General Measure Theory	a) understand basic concepts Fuzzy set theory. b) understand method of operations on fuzzy set,fuzzy number and arithmatics . c) understand use of fuzzy propositions and fuzzy quantifiers.	Jun-2017
Ь	WITZUI. GEHETAI WEASULE THEOLY	Understand the concept of	Jun-2017

			1
	1. Abstract Measure Space:	abstract measure space and	
	Measures and outer measure,	convergence in	
	Extension of a measure, Uniqueness	measure, almost uniform	
	of extension, Completion of a		
	measure, Measure spaces, Integration	convergence,signed	
	w.r.t. a measure. 2. Integration and	measure and their	
	<i>Lp</i> -spaces: The <i>Lp</i> -spaces, Convex	derivatives, and measure and	
	functions, Jensen's inequality, the		
	inequalities of Holders and Minkowski.	integration in a product	
	Completeness of $Lp(\mu)$ (Reisz Fisher	space.	
	Theorem)		
	3. Convergence: Convergence in		
	measure, almost uniform		
	convergence, Egoroffs theorem,		
	Lusin's theorem, Convergence		
	diagram, Counter examples.		
	4. Signed measure and their		
	derivatives: Signed measures and The		
	Hahn Decomposition, The Jordan		
	Decomposition, The Radon-Nikodym		
	theorem, Some applications of the radon theorem, bounded linear		
	functional on <i>Lp</i> .		
	5. Measure and integration in a		
	product spaces: Measurability in a		
	product spaces. The product measure		
	and Fubini's theorem, Lebesgue		
	measure in Euclidean space.		
7	MT-202: Complex Analysis	Upon successful completion	Jun-2017
'	1. Power series, Analytic functions,		
	Branch of a logarithm, Mobius	of this course the student will	
	(Bilinear) Transformations and	be able to:	
	Conformal Mappings.	a) understand basic concepts	
	2. Riemann-Stieltjes Integrals, Power	on power series ,analytic	
	Series representation of analytic		
	functions, Taylor's Theorem, Cauchy's	functions.	
	Estimate, Zeros of an analytic	b) understand index of closed	
	function, Liouville's theorem,	curve.	
	Fundamental Theorem of Algebra,	c) understand concept of	
	Maximum Modulus Theorem.		
	3. Index of a closed curve, Cauchy's	singularities and classification	
	theorem, Cauchy's Integral Formula,	of singularities.	
	Higher Order derivatives, Morera's		
	Theorem, The Homotopic version of		
	Cauchy's Theorem and simple		
	connectivity, Counting of Zeros, The		
	Open mapping theorem, Goursat's		
	theorem.		
	4. Singularities, Classification of		
	Singularities, Laurent's series,		
	Casorati-Weierstrass theorem,		

	Residues, Cauchy's residue theorem,		
	Evaluation of integrals, Meromorphic functions, The Argument principle,		
	Rouche' theorem, Schwartz lemma.		
	5. Convex functions and Hadamard's		
	three circles theorem, The space of		
	continuous functions, Spaces of		
	analytic functions, The Riemann		
	mapping theorem. (10 Hours)		
8	MT-203: Linear Algebra	Student will be able to:	Jun-2017
	1. Modules, Submodules, R- homomorphism, Isomorphism, Direct	a) understand basic concepts	
	sum of modules, free modules, Rank,	of module and submodule.	
	Structure theorem for finitely	b) understand method of free	
	generated modules over PID,	module,rank and structure	
	Application to group Theorem.	theorem.	
	2. Jordan and Rational canonical		
	forms.	c) understand the localization	
	3. Localization of rings, Local rings	of rings.	
	and modules, Noetherian modules,		
0	Primary decomposition for modules. MT-204: Mathematical Methods		lun 2017
9	1. Linear boundary value problems:	Upon successful completion	Jun-2017
	Introduction, derivation of wave	of this course the student will	
	equation, heat equation and Laplace's	be able to understand:	
	equation in Cartesian, cylindrical and	a) understand the concept of	
	spherical co-ordinates. Principle of	linear boundary value	
	superposition, series solutions,	problem.	
	separation of variables, types of initial	b) fundamental concepts	
	value problems and general solution	-	
	of partial differential equation. 2. Orthogonality: Orthogonality of sets	orthogonality of sets of	
	of functions in the space of piecewise	function in the space of	
	continuous functions on (a,b)	continuous function.	
	generalized Fourier Series,	d)understand boundary value	
	approximation in the mean, closed	problem involving wave	
	and complete orthonormal sets.	equations.	
	Fourier series and half range Fourier		
	series, Sturm-Liouville problems,		
	orthogonality of the eigen functions		
	and their uniqueness. 3. Boundary value problems:		
	Boundary value problems involving		
	the wave equation, heat equation and		
	Dirichlet's problems. Solution by the		
	method of separation of variables,		
	temperature in a long Cylinder, heat		
	transfer at the surface of the cylinder		
	and vibrations of the circular		
	membrane.		
	4. Bessel's functions: Bessel's		

	differential equation and its solution,		
	Bessel function of first kind, second		
	kind, Bessel functions of order zero		
	and one, recurrence relations,		
	generating function, orthogonality of		
	Bessel functions, Fourier Bessel Series.		
10	MT-205: Number Theory	Upon successful completion	Jun-2017
	1. Arithmetic functions: The Mobius	-	Juli 2017
	function (n) , The Euler totient function	of this course the student will	
	(<i>n</i>), Dirichlet product of arithmetic	be able to:	
	functions, Dirichlet inverses and the	a) understand arithmetic	
	Mobius inversion formula. The	-	
		functions and mobious	
	Mangolt function $\Lambda(n)$, Multiplicative	function.	
	functions, Dirichlet multiplication, The	b) understand congruence	
	inverse of a completely, multiplicative		
	function, Liouvilles function $\lambda(n)$, The	and residue classes.	
	divisor function $\sigma(n)$, Generalized	c) understand concept of	
	convolutions. Formal power series,		
	Bell series of an arithmetical function,	automorphism of groups.	
	Bell series and Dirichlet multiplication,	d) understand concepts of	
	Derivatives of arithmetical functions,	quadratic residue.	
	The Selberg identity.	•	
	2. Congruences: Residue classes,	e) understand basic concept	
	Complete and reduced residue	primitive roots.	
	systems and Euler-Fermat's theorem,		
	Polynomial congruences <i>mod p</i> .		
	Lagranges theorem and its		
	applications, Polynomial congruences		
	with prime power moduli. The		
	principle of cross classification.		
	3. Quadratic residues and Quadratic		
	Reciprocity law: Quadratic residues,		
	Legenre's symbol and its properties,		
	Evaluation of $(-1 p)$ and $(2 p)$,		
	Gauss lemma, The Quadratic		
	Reciprocity law and its applications,		
	The Jacobi Symbol. Applications to		
	Diophantine equations.		
	4. Primitive roots: The exponent of a		
	number modulo m, Primitive roots,		
	Primitive roots and reduced residue		
	systems, The non-existence of		
	primitive roots $mod \ p \ n$ and $p \ 2n$ for		
	odd primes p and $n \ge 1$. The non-		
	existence of primitive roots in the		
	remaining cases. The number of		
	primitive roots <i>mod m</i> . the primitive		
	roots and quadratic residues. The		
	index calculus.		
11	MT-301: Topics in Functional Analysis	Upon successful completion	Jun-2018
11	1. Normed linear spaces, Banach		JUII-2010
		of this course the student will	

	Spaces, Quotient spaces, Continuous	be able to:	
	linear Transformations. The Hahn-	a) understand normed linear	
	Banach theorem and its	space ,banach space,quotient	
	consequences, conjugate space and		
	separability, Second conjugate space.	spaces.	
	The natural embedding of normed linear space and its second conjugate	b) understand inner product	
	space, Weak *Topology on conjugate	space.	
	space. The open mapping theorem,	c) understanfinite	
	Projection on Banach space, The	dimensional spectral theory.	
	closed graph theorem, the conjugate	dimensional spectral theory.	
	of an operations, The uniform		
	boundedness theorem		
	(BanachSteinhauss theorem).		
	2. Inner Product spaces, Hilbert		
	space: Definition, examples and		
	simple properties, Schwartz's		
	inequality, Orthogonal complements,		
	Projection theorem, Orthogonal sets,		
	The Bessel's inequality, Fourier		
	expansion and Parseval's equations,		
	Gram-Schmidt orthogonalization		
	process, Separable Hilbert space, The		
	conjugate space, Riesz Theorem,		
	Operations and their adjoints on a		
	Hilbert space, self adjoint operators,		
	Normal and unitary operators		
	projections. 3. Finite dimensional spectral theory,		
	Determinants and spectrum of an		
	operator, The spectral theorem, Fixed		
	points, Definition and examples,		
	Banach contraction mapping theorem,		
	Brouwer's fixed point theorem,		
	Schauder's fixed point theorem.		
12	MT-302: Statistical Techniques	a) The course is aimed to	Jun-2018
12	1. Revision of Basic concepts: Discrete	· ·	5011 2010
	and Continuous series, Arithmetic	introduce stastical	
	Mean, Geometric Mean, Harmonic	techniques.	
	Mean, Median and Mode. Range,	b) Students will understand	
	Quartile deviation, Mean deviation,	arithmatic and geometric	
	Standard deviation, Variance and	mean.	
	coefficient of variation.		
	2. Probability: Sample space, discrete	c) Students will understand	
	probability, Mathematical theory of	the sample space and discrete	
	probability, independent events,	probability.	
	Addition and Multiplication theorems	d) Students will understand	
	of probability, conditional probability and Baye's theorem.	random variable poisson &	
	3. Theoretical distributions: Random	normal distribution.	
	variable, probability distribution of a		
		e) Students will understand	
	Provide a set of the set of the set of the set		
----	--	--------------------------------	----------
	discrete and continuous random	sampling and large sample	
	variable. Probability density function,	test	
	mathematical expectation. Binomial,		
	Poisson and Normal distributions and		
	their properties.		
	4. Correlation: Definition, meaning,		
	scatter diagram method, Karl		
	Pearson's method, Probable error,		
	Standard error and Rank correlation		
	and concurrent deviations.		
	5. Regression: Definition, meaning,		
	two lines of regression, regression		
	coefficients, standard error and		
	relation between correlation and		
	regression.		
	6. Sampling and Large sample tests:		
	Introduction to sampling, Simple		
	random sampling, stratified sampling		
	and systematic sampling. Testing of		
	hypothesis, level of significance, tests		
	of significance for large samples. Tests		
	for single proportion, difference of		
	proportion, single mean, difference of		
	means, difference of S.D.		
	7. Exact sampling distributions: Chi-		
	Square variate and Chi-Square		
	distribution, conditions of validity of		
	Chi-Square test, applications of Chi-		
	square distribution, Chi –Square test		
	for population variance, Chi-square		
	test for Goodness of fit and		
	Independence of Attributes. Definition		
	of student's 't' distribution and		
	derivation, Fisher's 't' distribution		
	-		
	constants of t-distribution, graph of t-		
	distribution, application, test for single		
	mean, test for difference of means,		
	paired t-test testing significance of		
	observed sample. Definition of F		
	statistic, F-distribution, applications, F-		
	test for equality of population		
	variances.		
13	MT-303: Topics in Field Theory	a) Students will aware of	Jun-2018
	1. Algebraic extensions, Splitting field,	formation of field theory.	
	Algebraic closure, Separable and	b) Students will understand	
	Inseparable extensions. Normal		
	extension, Perfect fields of finite	the concept of splitting field	
	fields.	seperable and inseperable	
	2. Galois extensions, Fundamental	extension.	
	theorem of Galois theory, Roots of	c) Students will understand of	
	unity, Solvability by radicals,	cj students will understand Of	

	Geometric construction, Transcendental extensions, Transcendental base.	fundamental theorem of galois theory, solvability of radicals.	
14	 MT-306: Theory of Lattices 1. Introduction to Posets, Semi-lattice, Two definitions of lattices, Congruence relations, Congruence lattice, The homomorphism theorem, Product of lattices, complete lattices, ideal lattice, Distributive and Modular Inequalities and Identities, Complements, Pseudocomplements, Boolean lattices, Boolean lattices of pseudo complements in a meet semi lattice. Atoms, Irreducibility of elements. 2. Characterization theorem for modular and distributive lattice, Dedekind's characterization of modular lattice, Birkhoff's characterization of distributive lattices, Stone theorem, Nabchin theorem, Hashimoto's theorem, Distributive lattice with pseudocomplementation, Stone lattice. Stone algebra, characterization of Stone algebra. Distributive, Standard and Neutral elements 4. Semimodular lattices and Modular 	 a) Students will aware of formation of lattice theory. b) Students will understand the concept of Characterization theorem for modular and distributive lattice. b) Students will understand Semimodular lattices and Modular pairs . 	Jun-2018
15	 MT-307: Elements of Graph Theory 1. Graphs: Definitions and examples, graphs as models, subgraphs, Operations on graphs, Matrix representation of graphs, walks, Trails, Paths, and Cycles. Connectedness and connectedness algorithm. 2. Trees and Connectivity: definition and simple properties of a tree, Bridges, Spanning Trees, Cayley's Theorem, Kruskal's Algorithm, Prim's Algorithm, Shortest path problems, The Breadth First Search (BFS)algorithm, The Backtracing algorithm, Dijkstra's Algorithm, Cut vertices, Connectivity. 3. Eulerian and Hamiltonian Graphs: 	 a) understand elements of graph theory. b) understand Trees and Connectivity: definition and simple properties of a tree, Bridges, Spanning Trees, Cayley's Theorem, Kruskal's Algorithm, Prim's. c) Matching: matching and augmenting paths, Berge theorem, The Hall's marriage problem, the personnel assignment problem. 	Jun-2018

	Eulerian trails, Eulerian and semi		
	Eulerian graphs, Fleury's algorithm,		
	Hierholzer's algorithm, The Chinese		
	Postman Problem, Hamiltonian		
	graphs, Dirac theorem, Closure of a		
	graph, Bondy and Chavatal theorem,		
	Travelling salesman problem (optimal		
	algorithms and the closest		
	intersection algorithm are not		
	expected).		
	4. Matching: matching and		
	augmenting paths, Berge theorem,		
	The Hall's marriage problem, the		
	personnel assignment problem and		
	matching algorithm for bipartite		
	graphs, The Hungarian algorithm.		
	5. Planar graphs and Coloring of		
	graphs: Plane and Planar graphs,		
	Euler's Formula, Vertex		
	coloring, Critical graphs, Cliques and		
	edge coloring of graphs .		
	6.Max- Flow, Min- Cut Theorem and		
	Ramsey numbers: definition of		
	Ramsey number, Relations among		
	Ramsey numbers.		
16	MT-401: Advanced Mathematical	After studying this course,	1
		Arter studying this course,	Jun-2018
	Methods	student should be able to:	Jun-2018
_0	1. Integral Equations: Introduction and	student should be able to:	Jun-2018
_0	1. Integral Equations: Introduction and classification of Linear Integral	student should be able to: 1. Understand the	Jun-2018
	1. Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential	student should be able to: 1. Understand the Introduction and classification	Jun-2018
_0	1. Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations,	student should be able to: 1. Understand the	Jun-2018
_0	1. Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and	student should be able to: 1. Understand the Introduction and classification of Linear Integral	Jun-2018
_0	1. Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. Volterra's	student should be able to: 1. Understand the Introduction and classification of Linear Integral equations,Integrodifferential	Jun-2018
	1. Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. Volterra's equations and resolvent kernel;	student should be able to: 1. Understand the Introduction and classification of Linear Integral equations,Integrodifferential equations,Fredholm's	Jun-2018
	1. Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. Volterra's equations and resolvent kernel; Convolution type of kernels.	student should be able to: 1. Understand the Introduction and classification of Linear Integral equations,Integrodifferential equations,Fredholm's equations, Degenerate	Jun-2018
	 Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. Volterra's equations and resolvent kernel; Convolution type of kernels. Fourier Transforms: The Fourier 	student should be able to: 1. Understand the Introduction and classification of Linear Integral equations,Integrodifferential equations,Fredholm's	Jun-2018
	 Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. Volterra's equations and resolvent kernel; Convolution type of kernels. Fourier Transforms: The Fourier Integral, complex form of Fourier 	student should be able to: 1. Understand the Introduction and classification of Linear Integral equations,Integrodifferential equations,Fredholm's equations, Degenerate	Jun-2018
	 Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. Volterra's equations and resolvent kernel; Convolution type of kernels. Fourier Transforms: The Fourier Integral, complex form of Fourier Integrals and Fourier Integral 	student should be able to: 1. Understand the Introduction and classification of Linear Integral equations,Integrodifferential equations,Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels.	Jun-2018
	 Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. Volterra's equations and resolvent kernel; Convolution type of kernels. Fourier Transforms: The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms; 	student should be able to: 1. Understand the Introduction and classification of Linear Integral equations,Integrodifferential equations,Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. 2. Explain the definition of	Jun-2018
	 Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. Volterra's equations and resolvent kernel; Convolution type of kernels. Fourier Transforms: The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms; properties, Fourier Cosine and Sine 	student should be able to: 1. Understand the Introduction and classification of Linear Integral equations,Integrodifferential equations,Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. 2. Explain the definition of The Fourier Integral, complex	Jun-2018
	 Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. Volterra's equations and resolvent kernel; Convolution type of kernels. Fourier Transforms: The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms; properties, Fourier Cosine and Sine Transforms, finite Fourier transforms, 	student should be able to: 1. Understand the Introduction and classification of Linear Integral equations,Integrodifferential equations,Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. 2. Explain the definition of	Jun-2018
	 Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels, Volterra's equations and resolvent kernel; Convolution type of kernels. Fourier Transforms: The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms; properties, Fourier Cosine and Sine Transforms, finite Fourier transforms, convolution theorem, Parsvals Identity 	student should be able to: 1. Understand the Introduction and classification of Linear Integral equations,Integrodifferential equations,Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. 2. Explain the definition of The Fourier Integral, complex form of Fourier Integrals and	Jun-2018
	 Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. Volterra's equations and resolvent kernel; Convolution type of kernels. Fourier Transforms: The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms; properties, Fourier Cosine and Sine Transforms, finite Fourier transforms, convolution theorem, Parsvals Identity and relationship between Fourier 	student should be able to: 1. Understand the Introduction and classification of Linear Integral equations,Integrodifferential equations,Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. 2. Explain the definition of The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem;	Jun-2018
	 Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. Volterra's equations and resolvent kernel; Convolution type of kernels. Fourier Transforms: The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms; properties, Fourier Cosine and Sine Transforms, finite Fourier transforms, convolution theorem, Parsvals Identity and relationship between Fourier transforms and Laplace transforms. 	student should be able to: 1. Understand the Introduction and classification of Linear Integral equations,Integrodifferential equations,Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. 2. Explain the definition of The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms;	Jun-2018
	 Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels, Hermitian and Symmetric kernels. Volterra's equations and resolvent kernel; Convolution type of kernels. Fourier Transforms: The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms; properties, Fourier Cosine and Sine Transforms, finite Fourier transforms, convolution theorem, Parsvals Identity and relationship between Fourier transforms and Laplace transforms. Calculus of Variations: A basic 	student should be able to: 1. Understand the Introduction and classification of Linear Integral equations,Integrodifferential equations,Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. 2. Explain the definition of The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms; properties, Fourier Cosine and	Jun-2018
	 Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels, Volterra's equations and resolvent kernel; Convolution type of kernels. Fourier Transforms: The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms; properties, Fourier Cosine and Sine Transforms, finite Fourier transforms, convolution theorem, Parsvals Identity and relationship between Fourier transforms and Laplace transforms. Calculus of Variations: A basic lemma, statement and formulation of 	student should be able to: 1. Understand the Introduction and classification of Linear Integral equations,Integrodifferential equations,Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. 2. Explain the definition of The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms;	Jun-2018
	 Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. Volterra's equations and resolvent kernel; Convolution type of kernels. Fourier Transforms: The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms; properties, Fourier Cosine and Sine Transforms, finite Fourier transforms, convolution theorem, Parsvals Identity and relationship between Fourier transforms and Laplace transforms. Calculus of Variations: A basic lemma, statement and formulation of several problems, the Euler-Laggrange 	student should be able to: 1. Understand the Introduction and classification of Linear Integral equations,Integrodifferential equations,Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. 2. Explain the definition of The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms; properties, Fourier Cosine and Sine Transforms, finite Fourier	Jun-2018
	 Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. Volterra's equations and resolvent kernel; Convolution type of kernels. Fourier Transforms: The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms; properties, Fourier Cosine and Sine Transforms, finite Fourier transforms, convolution theorem, Parsvals Identity and relationship between Fourier transforms and Laplace transforms. Calculus of Variations: A basic lemma, statement and formulation of several problems, the Euler-Laggrange equation, first integrals of Euler- 	student should be able to: 1. Understand the Introduction and classification of Linear Integral equations,Integrodifferential equations,Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. 2. Explain the definition of The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms; properties, Fourier Cosine and Sine Transforms, finite Fourier transforms, convolution	Jun-2018
	 Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. Volterra's equations and resolvent kernel; Convolution type of kernels. Fourier Transforms: The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms; properties, Fourier Cosine and Sine Transforms, finite Fourier transforms, convolution theorem, Parsvals Identity and relationship between Fourier transforms and Laplace transforms. Calculus of Variations: A basic lemma, statement and formulation of several problems, the Euler-Laggrange equation, first integrals of Euler- Lagrange equation, Geodesics, 	student should be able to: 1. Understand the Introduction and classification of Linear Integral equations,Integrodifferential equations,Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. 2. Explain the definition of The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms; properties, Fourier Cosine and Sine Transforms, finite Fourier transforms, convolution theorem.	Jun-2018
	 Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. Volterra's equations and resolvent kernel; Convolution type of kernels. Fourier Transforms: The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms; properties, Fourier Cosine and Sine Transforms, finite Fourier transforms, convolution theorem, Parsvals Identity and relationship between Fourier transforms and Laplace transforms. Calculus of Variations: A basic lemma, statement and formulation of several problems, the Euler-Laggrange equation, first integrals of Euler- Lagrange equation, Geodesics, Brachistochrome problem, Minimum 	student should be able to: 1. Understand the Introduction and classification of Linear Integral equations,Integrodifferential equations,Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. 2. Explain the definition of The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms; properties, Fourier Cosine and Sine Transforms, finite Fourier transforms, convolution theorem. 3. Explain definition,	Jun-2018
	 Integral Equations: Introduction and classification of Linear Integral equations; Integrodifferential equations. Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. Volterra's equations and resolvent kernel; Convolution type of kernels. Fourier Transforms: The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms; properties, Fourier Cosine and Sine Transforms, finite Fourier transforms, convolution theorem, Parsvals Identity and relationship between Fourier transforms and Laplace transforms. Calculus of Variations: A basic lemma, statement and formulation of several problems, the Euler-Laggrange equation, first integrals of Euler- Lagrange equation, Geodesics, 	student should be able to: 1. Understand the Introduction and classification of Linear Integral equations,Integrodifferential equations,Fredholm's equations, Degenerate kernels, Hermitian and Symmetric kernels. 2. Explain the definition of The Fourier Integral, complex form of Fourier Integrals and Fourier Integral theorem; Fourier transforms; properties, Fourier Cosine and Sine Transforms, finite Fourier transforms, convolution theorem.	Jun-2018

			1
17	dependent variables, Parametric representation, Undetermined end points, Brachistochrome from a given curve to a fixed point and the simple Isoperimetric problem. 4. Z-transforms: Introduction, definition, formulae, properties, definition of inverse Z-transform, properties, application of z-transform to difference equations. MT-402: Operations Research	definition of inverse Z- transform, properties, application of z-transform to difference equations. After successful completion of	Jun-2018
	 PERT AND CPM: Introduction, Phases of project management, Network diagrams, Fulkerson's rule, slack, forward pass, backward pass, critical path, project duration, various floats, tabular form, differences between PERT and CPM, Project cost and crashing the Network. Queuing Models: Introduction, application of Queuing models, characteristics, arrival and service distribution, Kendall's notation for Queuing models, Single channel queuing theory, M/M/I model and generalization, M/M/I:SIRO/model, M/M/1: FCFS/N/Finite queue length model, M/M/1:FCFS/n/N Limited source model, M/M/C:FCFS/ / Multichannel queuing theory model. Decision theory: Steps involved in Decision theory, decision making under uncertainty, Minimax, Maximin, Maximax, Hurwitz and Laplace criteria. Decision trees. Replacement Models: Introduction, Replacement of Items that deteriorate with time with no changes in money value, with change in value of money, replacement of items that deteriorate with time with no changes in money value, with change in value of money, replacement of items that fail suddenly, individual replacement policy, group replacement policy and staffing problems. Decision theory: Necessity and maintenance of Inventory, inventory costs, inventory control problems, inventory models with deterministic demand, with probabilistic demand, 	 Arter successfur completion of this course, students are expected to: 1. Understand the structure : Introduction, Phases of project management, Network diagrams, Fulkerson's rule, slack, forward pass, backward pass, critical path, project duration, various floats, tabular form, differences between PERT and CPM, . 2. Understand the Replacement Models, Decision theory, Decision theory, Simulation, Nonlinear Programming. 	

	with price breaks, multi-item deterministic models, forecasting of demand, forecasting methods, seasonal demand, when to order, : safety stock and how much to order. 6. Simulation Introduction, when to use simulation, advantages and limitations of simulation technique, Monte Carlo method, generation of random numbers, time flow mechanism, simulation languages. 7. Non-linear Programming: Quadratic program, Wolfe's algorithm, Beale's algorithm. Frank Wolfe's method, reduced gradient method, Kelly's cutting plane method, method of approximate programming, gradient projection method, Generalized Lagrange's multiplier technique, separable programming, linear fractional programming.		
18	 MT-403: Commutative Algebra 1. Modules, Free modules, Projective modules, Tensor product and Flat modules 2. Noetherian modules, Primary decomposition, Artinian modules 3. Integral extensions: Integral elements, Integral extensions and Integrally closed domain. 4. Dedekind domain: Valuation rings, Discrete valuation rings and Dedekind domains 	After successful completion of this course, students are expected to: 1) know the use module and free module. 2) know the noetherian module and primary decomposition. 3) Know Valuation rings, Discrete valuation rings and Dedekind domains.	Jun-2018
19	MT-404: Advanced Abstract Algebra 1. Basic concepts of maximal ideals, prime ideals and nil radical of an ideal, semiprime ideals, primary ideals, Prime avoidance theorem. 2. Jacobson radical of a ring, Semisimple ring, Prime radical of a ring, Quasi-regular element, Jradical, J-semisimple ring, Regular ring. 3. Direct sum of rings, Subdirectly reducible and irreducible rings. 4. Noetherian ring, irreducible ideals, irredundant primary representation, Cohen's theorem, Krull intersection	After completing this syllabus students will able to: 1) Understand the structure of ideals and prime ideals. 2) understand of direct sum of ring. 3) Understand the irreducible ideals, irredundant primary representation, Cohen's theorem, Krull intersection theorem.	Jun-2018

	theorem.		
20	 MT-406: Algebraic Topology 1. Geometric complexes, polyhedron, orientation of Geometric complexes. 2. Chains, Cycles, Boundaries, Homology groups, Examples and structure of homology groups, The Euler-Poincare theorem, Euler's theorem, Pseudo manifolds, Fundamental group of <i>Sn</i>. 3. Simplicial approximation, Induced homomorphism on the homology groups, The Brouwer's fixed point theorem. 4. Homotopic paths and Fundamental groups, Covering homotopy property for <i>S</i>1, Examples of Fundamental groups, Relation between first homology group. 	Learning After successful completion of this course, students are expected to: 1. Know the use polyhedron, orientation of Geometric complexes., 2. Solve , The Euler-Poincare theorem, Euler's theorem, Pseudo manifolds. 3. Use Homotopic paths and Fundamental groups, Covering homotopy property for <i>S</i> 1, Examples of Fundamental groups, Relation between first homology group and fundamental group.	Jun-2018

DEPARTMENT OF MICROBIOLOGY

Under Graduate (UG)

After successful completion of three year degree program in B.Sc (Microbiology)a student should be able to:			
Should be abl	Program Outcomes(PO)	Program specific Outcomes(PSO)	
1	Students will understand the concepts	Microbiology graduates will apply	
	and significance in the field of	their knowledge and skills gained	
	Biochemistry / Biotechnology /	through the program to achieve	
	Microbiology that can be used for	success in their academic and/or	
	solving the real time problem	professional development.	
2	Students will acquire skills and ability in	Our candidates will develop a sense of	
	their field and find professional	societal and ethical responsibility	
	opportunities in industry, agriculture and	pertaining to health, agriculture, dairy,	
	higher studies.	genetic engineering, and fermentation	
		industry.	
3	Students will have improved personal	Students will have a wide perspective	
	qualities and transferable skills to help	on fermentation technology, GMP,	
	them to groom as responsible citizens.	GLP and IPR.	
4	To develop problem solving skills in the	Students will understand	
	students.	contemporary environmental issues	
		and shall be motivated to provide	
		solutions for solving them.	
5	To develop proper aptitude towards the	The knowledge shall promote our	
	subjects.	graduates to stand independently	
		amidst the growing technological	
		innovations in the subject.	

DEPARTMENT OF MICROBIOLOGY

POST GRADUATE (PG)

After successful completion of three year degree program in M.Sc (Microbiology) a student should be able to:			
Sr. No	Program Outcomes(PO)	Program specific Outcomes(PSO)	
1	To impart the profound theoretical and practical knowledge of the specific science discipline along with the fundamental core concepts	Gain proficiency in laboratory techniques in both microbiology and molecular biology and be able to apply the scientific methods to the processes of experimentation and hypothesis testing	
2	To make the student to develop the ability to think analytically, independently and draw logical conclusions to solve real-life problems.	Learn to work as a team as well as independently to retrieve information, carry out Research investigations and result interpretations	
3	To utilize the skills and knowledge gained through the subject to deal with real life situations and problems related to society, environment, research and development etc.	Realize the impact of science in society and plan to pursue research	
4	To groom the students for all-round development and mold them in a trained workforce to provide teaching-learning, research, business, professional supports in the various science disciplines.	Develop the ability to understand and practice the ethics surrounding scientific research.	
5	To train the students to employ modern techniques, tools, methodologies, equipment, hardware/software etc. to perform objective oriented scientific and planned experiments	Acquire significant knowledge on various aspects related to microbiology including biochemical techniques, immunology, physiology, agriculture, environment, pharmaceutical, molecular biology, applied recombinant DNA technology and technical skills related to microbial metabolite	

Department of Physics

Under Graduation (UG)

After S be able		programme in (B.Sc. Physics) a student should
Sr. No.	Programme Outcomes(PO's)	Programme Specific Outcome(PSO's)
1	To promote understanding of basic facts and concept in physics while retaining the excitement of Physics	To develop ability and to acquire the knowledge of terms facts and concepts pro- cesses technique and principle of subject.
2	To make student capable of studying Physics in academic and Industrial courses	To develop the ability to apply the knowledge of content of principle of Physics
3	To expose the student to various emerging new areas of Physics and apprise them with their prevalent in their future studies and their applications in various spheres of Physical Sciences.	To enquire the new knowledge of Physics and development therein
4	To develop problem solving skills in students.	To expose and to develop interest in the field of Physics
5	To develop proper attitude towards the subject	To develop the power of appreciation the achievements in Physics and their role in na- ture and Society
6	To expose the student to different processes used in Industrial and their applications	To develop skills required in physics such as the proper handling of Apparatus and various instruments.

Semester-I (F.Y.B.Sc. Physics)

Sr. No.	Courses	Outcomes
		1. Define Scalar and Vector.
1	PHY-101 Basics Mechanics	2. Explain Newton's laws of motion
I		3. Example of Linear and Rotational motion
		1. Know the term GPS and Kepler's law
2	PHY- 102 Dynamics And Elasticity	2. Distinguish between S.H.M and S.M
2		3. Demonstrate the models of Elasticity.
3	PHY 103: LAB-I	1. Develop model for M.I

Semester-II (F.Y.B.Sc. Physics)

Sr. No.	Courses	Outcomes
		1. State Coulombs law and its application
1	PHY 201: Electricity And Electrostatics	2. Explain terms Gradient Curl etc.
		3. Apply the concept of Electrostatics
	PHY 202: Dielectrics, Magnetism	1. Differentiate Electrostatics and Magneto statics
2	And Electromagnetism	2. Investigate Self and Mutual Inductance
		3. Apply Maxwell equations.
3	PHY 203: LAB-I	1. Use Digital Multimeter.

Semester-III (S.Y.B.S	c. Physics)
-----------------------	-------------

Sr. No.	Courses	Outcomes
1	PHY 301: Thermodynamics and Kinetic theory of gases	 Explain Various Thermo-dynamical Processes. Classify Second and Third Law of Thermodynamics and Entropy Compute Efficiencies of all heat Engines.
2	PHY 302 (A): Electronics –I	 Compare p and n type semiconductors. Express Half-wave & Full-Wave Rectifiers Apply the different Gates
3	PHY 302 (B): Instrumentation	 Define Accuracy, Precision and Errors Give examples of thermometers Calculate Variation of intensity of sound with distance
4	PHY 303: Lab III	1. Use C.R.O
5	PHY 304: Skill Enhancement Course I (SEC-I) Renewable energy and Energy Harvesting	 Know Solar energy and its importance Distinguish Ocean, geothermal, Hydro and Biomass energy resources Apply the concept of Harvesting

Semester-IV (S.Y.B.Sc. Physics)

After S	After Successful completion of these courses student should be able to		
Sr.No.	Courses	Outcomes	
1	PHY 401: Waves, Oscillations and Acoustics	 Define Plane waves, Spherical waves. Recognise Resonance and its types Investigate Parameters of Sound 	
2	PHY 402: Optics and LASERS	 Explain Lenses and its types. Distinguish Interference, Diffraction and Polarization. Investigate types of LASER 	
3	PHY 403: Lab IV	1. Use Spectrometer.	
4	PHY 404: Skill Enhancement Course II Electrical Circuits and Network Skills	 Define Voltage, Current, Resistance, and Power Distinguish KVL and KCL. Give examples of Electric Motors 	

Sr. No.	Courses	Outcomes
		1. State Gauss divergence theorem, Stokes' theorem
1	PHY 501 Mathematical Physics	2. Express different co-ordinate systems
		3. Explain Special Functions
		1. Classify solid and liquid.
_	PHV502 Solid State Physics	2. Use X-Ray Diffraction
2	PHY502 Solid State Physics	3. Explain Free electron theory of metals and Band
		theory of solids
	DUV 502 Atomic and malacular	1. Define Quantum numbers
3	PHY 503 Atomic and molecular	2. Explain Two Valence Electron System
	Physics	3. Apply X-ray spectra
	PHY 504(A) Electronics-II	1. State Transistor biasing
4		2. Explain Semiconductor switching devices
		3. Distinguish Flip-Flops and Counters
		1. Define Resolution, Threshold, Range and span
		2. Explain Transducers
5	PHY 504(B) Instrumentation -II	3. Use Display devices- LED, LCD,
		7-segment display
	PHY 505 Solar Energy and applications	1. Define structure of the sun
6		2. Distinguish Flat plate collector
		3. Use solar cell
		1. State Conduction ,Convection and Radiation
7	PHY 506(B) :Refrigeration and	2. Distinguish condenser and evaporator
	Air conditioning- I	3. Explain Refrigerants.
8	PHY 507 Physics Practical I	1. Use Solar Cell
9		1. Study of different tools used in Refrigeration
	PHY 508 Physics Practical II	and Air Conditioning
10	PHY 509 Physics Practical III orProject	1. Use Literature Review

Semester-VI (T.Y.B.Sc. Physics)

Sr. No.	Courses	Outcomes
		1. State Schrodinger Equation
1	PHY 601 Quantum mechanics	2. Distinguish Step potential and potential well.
		3. Use Operators in Quantum Mechanics
		1. Explain Properties of Materials
2	PHY602 Material Science	2. Study Atomic disorder in materials
		3. Demonstrate types of Polymers
		1. Express features of nuclear forces
3	PHY 603 Nuclear Physics	2. Differentiate Nuclear Models
		3. Give example of Nuclear Reactor
		1. Define Wave particle duality of matter
4	PHY 604 Modern Physics	2. Analyse Uncertainty principle
		3. Design Fiber Optics
		1. Define Vernier calliper, Screw gauge, trav-
5	PHY 605 Basic Instrumentation	elling microscope
5	Skills	2. Interprets Voltmeter, Ammeter ,Ohmmeter
		3. Use C.R.O.
		1. State Psychrometry and psychrometic
6	PHY 606 (B) Refrigeration and Air	Properties.
6	conditioning- II	2. Distinguish Air Conditioning equipment's.
		3. Explain Solar Refrigeration System
7	PHY 607 Physics Practical I	1. Use Photocell
8	PHY 608 Physics Practical II	1. Use Op-Amp.
9	PHY 609 Physics Practical III	
	or Project	1. To do Experimental work.

Post-Graduation (PG)

After S be able		programme in (M.Sc. Physics) a student should
Sr. No.	Programme Outcomes(PO's)	Programme Specific Outcome(PSO's)
1	Acquired substantial knowledge of	Make them understand that acquiring
	different areas in physics, basic	knowledge and skills appropriate to their
	knowledge in mathematics with	professional activities is a never-ending
	advanced knowledge in some	process.
	specialized areas of physics.	
2	Be able to apply theoretical and/or	Inspire them in such a way that they can
	experimental methods, including the use	demonstrate and maintain the highest standard
	of numerical methods and simulations.	on ethical issues in their professional lives.
3	Have some research experience within a	To analyze problems starting from first
	specific field of physics, through a	principles, evaluate and validate experimental
	supervised project (Master's	results, and draw logical conclusions thereof.
	dissertation).	
4	Be familiar with contemporary research	To pursue research careers, careers in
	within various fields of physics and	academics, in industries in physical science
	have the background and experience	and in allied fields.
	required to model, analyse, and solve	
	advanced problems in physics.	
5	To recognize the need for continuous	Create an awareness among the students to be
	learning and develop throughout for the	persons of integrity, to be responsible and
	professional career.	enlightened citizens with a commitment to
		deliver good to the society within the scope of
		the bestowed rights and privileges.
6	To apply scientific and technical	As technology exploits the rules of Physics,
	knowledge and skills to other	students properly trained in Physics can be
	disciplines and areas of study.	good researchers in the field of technology too.

Semester-I (M.Sc. I Physics)

Sr. No.	Courses	Outcomes
110.		 To learn about special type of matrices that are relevant in physics. Introduce Special functions like Gamma function,
1	PHY-101 Mathematical Methods for Physics	Beta function, Delta function Bessel functions and their recurrence relations
		3. To Learn the fundamentals and applications of Fou- rier series, Fourier and Laplace transforms, their in- verse transforms etc.
2	PHY- 102 Classical Mechanics	1. Define Lagrangian and Hamiltonian approaches in classical mechanics
		2. Express Kinematics and Dynamics of rigid body in detail and ideas regarding Euler's equations of mo- tion
		 Describe Theory of small oscillations in detail along with basis of free vibrations.
3	PHY 103 Quantum Mechanics	 State Linear vector spaces, Hilbert space, concepts of basis and operators and bra and ket notation Apply both Solve dinger and Heisenberg formula
		2. Apply both Schrodinger and Heisenberg formula- tions of time development and their application
4	PHY-104 Solid State Physics	 To know Bloch's theorem and what energy bands are and know the fundamental principles of semi- conductors
		2. Express the fundamentals of dielectric and ferroe- lectric properties of materials
		 Differentiate basic models of dia, para and ferro magnetism
5	PHY 105: Basic Physics Laboratory – I	1. To learn Op-amp 741 and its application

Semester-II (M.Sc. I Physics)

Sr. No.	Courses	Outcomes
1	PHY 201: Statistical Mechanics	 Define and discuss the concepts of micros- tate and macro -state of a model system Apply techniques from statistical mechan- ics to a range of situations. Identify and solve problems in statistical mechanics using ensemble theory
2	PHY 202: Classical Electrodynamics	 Understand Maxwell's equations and electromagnetic boundary conditions. Discuss electromagnetic wave propagation through wave guides and transmission lines. Define special theory of relativity by including the relativistic electrodynamics
3	PHY 203: Material Science	 Discuss types of solid solutions Explain Iron-Carbon phase diagram and different phases of the system Apply the concept of glass and ceramics
4	PHY 204 (B) : Electronic Instrumentation	 State the term A.M., F.M., P.M. Distinguish ECG and EEG Apply the concept of Flow meter
5	PHY 205: Basic Physics Laboratory – II	1. To use dual power supply.

Semester-III (M.Sc. II Physics)

Sr. No.	Courses	Outcomes
	PHY 301 Atomic and Molecular Physics	1. Differentiate Zeeman effect and Paschen Back effect
1		2. Describe pure rotational spectra, Rotation-vi- bration spectra, visible and UV spectra
		3. Explain Raman spectra of diatomic molecules
	PHY 302 (A) Materials Synthesis Methods	1. State Thin Films Deposition Techniques
2		2. Discuss Chemical Bath Deposition Technique
		3. Explain Chemical Spray Method
	PHY 303 (A) Systematic Materials Analysis	1. Define Characterization Techniques
3		2. Distinguish UltraViolet&VisibleSpectroscopy
		3. Explain X-Ray Diffraction
4	PHY -304 Special Laboratory-I	1.Use Modulation technique
5	PHY 305 Project Work-I	1. To do Literature survey

Semester-IV (M.Sc. II Physics)

After S	After Successful completion of these courses student should be able to		
Sr. No.	Courses	Outcomes	
1	PHY 401 Nuclear Physics	1. Define Types of nuclear models	
1		2. Explain Nucleon – Nucleon Interaction	
2	PHY 402 (B) LASER and it's Applications	1. Discuss LASER and its Operations	
		2. Explain Laser Systems and Types	
3	PHY 403 (A) Renewable Energy Sources	1. Explain Biomass Energy Conversion Technologies	
		2. Distinguishes Wind Energy and Ocean energy	
4	PHY -404 Special Laboratory-II	1. Use LASER	
5	PHY 405 Project Work-II	1. To do experimental work.	

Department of Electronics

Under Graduation (UG)

After	After Successful completion of three year degree programme in (B.Sc. Electronics) a student should be		
able t	0		
Sr.	Programme Outcomes(PO's)	Programme Specific Outcome(PSO's)	
No			
1	To make student capable of studying	To develop the ability to apply the knowledge of	
	Electronics in academic and Industrial	content of principle of Electronics.	
	courses.		
2	To promote understanding of basic facts	To develop ability and to acquire the knowledge of	
	and concept in Electronics while retaining	terms facts and concepts processes technique and	
	the excitement of Electronics.	principle of subject.	
3	To expose the student to various emerging	To enquire the new knowledge of Electronics and	
	new areas of Electronics	development therein.	
4	To develop problem solving skills in	To develop ability of students and motivate them to	
	students.	apply advanced concepts of Electronics to solve real	
		life problems.	
5	To expose the student to different	To prepare the students for successful career in	
	processes used in Industrial and their	industry and motivate them for higher education.	
	applications.		
6	To develop proper attitude towards the	To provide exposure to the students for analyzing	
	subject.	electronics problems.	
7	To develop software skills in students.	To provide necessary foundation on computational	
		platforms and software simulation tools.	

Semester-I (F.Y.B.Sc. Electronics)

After	After Successful completion of these courses student should be able to		
Sr.	Courses	Outcomes	
No			
1	ELE-101:- Network Analysis and Semiconductor Diode	 Know the characteristics of basic electronics components. Apply knowledge to develop circuits using electronic devices. 	
		3. Understand and analyze linear electronic circuits.	
2	ELE-102:- Digital Integrated Circuits	 Understand various codes used in data processing Use of logic gate and Boolean algebra for minimize the circuit. Understand the function and need of sequential 	
		circuits in digital design.	
3	ELE-103:- ELECTRONICS LAB -I	 Identify the of basic electronics components. Apply the concept and knowledge of electronics devices to real life problems. Review, prepare and present technological developments. 	

Course Outcomes

Semester-II (F.Y.B.Sc. Electronics)

After	After Successful completion of these courses student should be able to		
Sr.	Courses	Outcomes	
No			
1	ELE-201:- Analog Electronics	 Know the characteristics transistor Understand the function and need of Amplifiers. Understand the function and need of feedback in oscillators. 	
2	ELE-202:- Linear Integrated Circuits	 Understand function of operational amplifiers Use of operational amplifiers Understand the function digital and analog converters 	
3	ELE-203:- ELECTRONICS LAB -II	 Apply the concept and knowledge of integrated circuit chips to develop new systems. Model complex circuits and simulate them. Handle simulation software to analyze electronics circuits. 	

Semester-III (S.Y.B.Sc. Electronics)

After	After Successful completion of these courses student should be able to			
Sr.	Courses	Outcomes		
No				
1	ELE-301:- Analog Communication	1. Understand and identify the fundamental concepts and various components of analog communication systems.		
		Apply knowledge to develop circuits of analog modulation and demodulation.		
		3. Analyze modulation circuits and understand the behavior of the systems.		
2	ELE-302:-Microprocessors and Applications	1. Understand and analyze 8085 microprocessor and its programming.		
		2. Apply the concept and knowledge of microprocessors to real life problems.		
		3. Develop interfacing to real world devices.		
3	ELE-303:- ELECTRONICS LAB –III	1. Identify and describe different analog modulation techniques.		
-		2. Analyze AM radio receiver.		
		3. Learn use of hardware & software tools.		
4	ELE-304:- Electrical Circuits and Network Skills	1 Measurement of R,L,C, Voltage, Current, Power Factor, Power.		
		2. Measure frequency, phase with Oscilloscope		
		3. Use Digital voltmeters		

Semester-IV (S.Y.B.Sc. Electronics)

Sr.	Courses	Outcomes
No		
1	ELE-401:- Digital Communication	1. Understand and identify the fundamental concepts and various components of digital Communication systems.
		2. Apply the concept and knowledge of digital communication to develop new systems.
		3. To understand Multiple Access and Spread Spectrum Techniques for mobile and cellular communication system.
2	ELE-402:-Microcontrollers and Applications	1. Learn importance of Microcontroller in designing real time applications
		2. Gain knowledge of microcontroller programming.
		3. Apply practical knowledge of microcontrollers to solve real life problems of the society.
3	ELE-403:- ELECTRONICS LAB -IV	1. Identify and describe different digital modulation techniques.
		2. Develop interfacing to real world devices using microcontroller.
		3. Learn use of hardware & software tools.
4	ELE-404:- Computational Techniques in Electronics	1. Evaluate the True roots using Bisection method.
		2. To understand the Gauss Elimination Method.
		3.Write numerical programs, such as C Language programs, to solve the problems;

Semester-V (T.Y.B.Sc. Electronics)

Courses ELE-501:- Semiconductor Electronics	Outcomes 1. Estimate the number of carriers at a given
ELE-501:- Semiconductor Electronics	1. Estimate the number of carriers at a given
ELE-501:- Semiconductor Electronics	C C
	temperature for a semiconductor.
	2. Understand the importance of doping to change
	carrier density.
	1. Students will able to design digital circuits according
	to requirements.
	2. Student will able to write VHDL code for digital
	circuit with the help of different modeling style.
	1. Student will be able to Aware about the
ELE-503:- Advanced Microprocessors	microprocessor and its architecture considerations &
	Capable to analyze the operating modes.
	2. To gain the Knowledge about the Pentium series
	processor.
ELE-504:- Electronic Instrumentation	1. Understand the concept of measurement systems
	and its various characteristics.
	2. Aquent the knowledge of testing instruments.
ELE-505 Medical Electronics	1. Understand the working principles of various
	therapeutic and monitoring systems.
	2. Understand the measurement and analysis
	techniques for physiological parameters.
ELE-506(A):- Embedded C	1. Learn structure oriented programming concepts
	required in all other languages.
	2. After completion of this course students are able to
	built real world applications based on embedded
	system and automation.
ELE-506(B):- Basics Fiber Optic	1. Recognize and classify the structures of Optical fiber
Communication	and types.
	2. Awareness of analog and digital links.
ELE-507:- Practical Lab I	1. Simulate using MATLAB.
	2. Operate and femiliarize with DD encorative FCC
	2. Operate and familiarize with BP apparatus, ECG machine, ventilator, incubator, Boyle's apparatus,
	pulse oxymeter.
ELE-508:- Practical Lab II	1. Simulate using VHDL.
	2. Program microprocessor.
ELE-5039- Project Part I	1. Do literature survey for project.
	2. To preset project progress report.
	ELE-505 Medical Electronics ELE-506(A):- Embedded C ELE-506(B):- Basics Fiber Optic Communication ELE-507:- Practical Lab I ELE-508:- Practical Lab II

Semester-VI (T.Y.B.Sc. Electronics)

Sr. No	After Successful completion of these courses student should be able to				
51. 140	Courses	Outcomes			
1	ELE-601:- Power Electronics	1. Have fundamental knowledge of semiconductor power electronic device.			
		2. Apply this knowledge for designing power electronic circuits.			
2	ELE-602:- Consumer Electronics	1. To identify the various digital and analog signal.			
		2. Understand the various types of consumer goods and acquaint the skill of fault findings.			
3	ELE-603:- Microprocessor Interfacing Techniques	1. Aware about the concept of microprocessor and its interfacing & Capable to analyze the operation and priorities of Interrupt			
		2. Program interval timer and communication interface 8251 & analyze the operating modes.			
4	ELE-604:- Computer Network	1. Recognize the technological trends of Computer Networking.			
		2. Understand computer networking basics.			
5	ELE-605:- Embedded Systems	 Programming 8051-microcontroller such as timer counter and serial port programming. 			
		2. Able to interface with Stepper motor and temperature sensor.			
6	ELE-606(A):- Electrodynamics	1.Apply Gauss Law, Amperes Force Law, Lorentz's force, Biot-Savarts Law, Faraday's Law for solving the problems in Electrostatic and Electromagnetic Fields.			
		2. Understand the concept of Faradays law, Lenz's Law and Maxwell Equation			
7	ELE-606(B):- Antenna & Wave Propagation	1. Understand how the electromagnetic wave propagate from an antenna			
		2. Calculate the various parameters of antenna to know its efficiency.			
8	ELE-607:- Practical Lab I	1. Identify blocks of computer system and tracing the system.			
		2. Computer Assembling/Disassembling			
9	ELE-608:- Practical Lab II	1. Simulate using MATLAB.			
		2. Program microcontroller and interfacing.			
10	ELE-6039- Project Part II	1. Fabricate and test circuit			
		2. Prepare project report.			